

PATAGONIA GOLD S.A.

Perito Moreno, Santa Cruz, Argentina.

TECHNICAL REPORT
ON THE
MINERAL RESOURCES
OF THE
LA MANCHURIA PROJECT

SANTA CRUZ PROVINCE, ARGENTINA

Thomas C. Stubens, P.Eng. September 15, 2010

Table of Contents

		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	5
2.1	QUALIFIED PERSONS	
2.2	CONVENTIONS	
2.3	UNITS AND ABBREVIATIONS	5
3.0	RELIANCE ON OTHER EXPERTS	7
4.0	PROPERTY DESCRIPTION AND LOCATION	
4.1	LOCATION	
4.2	MINERAL TENURE AND TITLE	
	.2.1 La Manchuria Project-Patagonia Gold S.A Exploration Claims	
4.3 4.4	SURFACE RIGHTS AND OBLIGATIONS	
4.4	ENVIRONMENTAL LIABILITIES	
4.5	PERMITS	
		12
5.0	CLIMATE AND TOPOGRAPHY, ACCESS AND INFRASTRUCTURE, ENVIRONMENTAL AND SOCIAL ISSUES	13
5.1	TOPOGRAPHY, CLIMATE, VEGETATION AND WILDLIFE	
5.2	ACCESS AND INFRASTRUCTURE	
5.3	ENVIRONMENTAL AND SOCIAL RESPONSIBILITY	
6.0	HISTORY	15
6.1	EARLY HISTORY	15
6.2	ABACUS-BARRICK EXPLORATION	15
7.0	GEOLOGICAL SETTING	
7.1	REGIONAL SETTING	
7.2		
	.2.1 Stratigraphy	
7	.2.2 Structural Geology	20
8.0	DEPOSIT TYPES	24
9.0	MINERALIZATION	
9.1	REGIONAL MINERALIZATION	
9.2		
	2.1 Description and Distribution	
	.2.2 Hydrothermal Alteration	
	2.3 Mineralogy and Paragenesis2.4 Controls on Mineralization	28 32
7	7. T	1/.

10.0	PATAGONIA GOLD EXPLORATION PROGRAM	35
10.1		
10.2	TRENCHING	
10.3	PETROGRAPHY	36
10.4	INTERPRETATION OF THE EXPLORATION INFORMATION	40
10.5	EXPLORATION POTENTIAL	41
	DRILLING	
11.1		
11.2		
11.3	DRILL CORE LOGGING	
11.4	REVERSE CIRCULATION DRILLING METHODS	
11.5		
	.5.1 Phase 1 Drilling Campaign: January – April 2008	
	.5.2 Phase 2 Drilling Campaign: September to December 2008	
11	.5.3 Phase 3 Drilling Campaign	52
	SAMPLING METHODS AND APPROACH	
12.1		
12.2		
12.3		
12.4		
	.4.1 Diamond Drill Core Recovery	
	.4.2 Reverse Circulation Sample Recovery	58
	SPECIFIC GRAVITY DETERMINATIONS	
	5.1 Specific Gravity Methodology	
	5.2 Specific Gravity Results	
12.6	SUMMARY OF SAMPLING	60
	SAMPLE PREPARATION, ANALYSIS AND SECURITY	61
13.1	GENERAL DESCRIPTION	
13.2		61
13.3	REVERSE CIRCULATION DRILL SAMPLES	61
13.4	DIAMOND DRILL CORE SAMPLES	
13.5		
13.6	,	
	.6.1 Sample Preparation and Analysis	
13.7		
	.7.1 Laboratory Standards & Blanks	
	.7.2 Check Assay Results	
	7.3 Field Duplicates – RC Drilling	
	7.4 Field Duplicates – Trenching	
13.8		68
13.9	ADEQUACIES OF SAMPLE PREPARATION, SECURITY, AND ANALYTICAL PROCEDURES	70
	ANALTHUAL PRUCEDIIREN	/(1

14.0	DATA VERIFICATION	71
14.1	DRILLHOLE DATABASE	71
14.2	SURFACE TOPOGRAPHY	71
14.3		
15.0	ADJACENT PROPERTIES	72
16.0	MINERAL PROCESSING AND METALLURGICAL TESTING	
16.1		
	CYANIDE LEACH TESTS	
	6.2.1 Head and Metallic Assay Results	
	6.2.2 Leach Test Results	
16.3	GRAVITY AND FLOTATION TESTS	75
10	6.3.1 ICP and Head Assay Results	
10	6.3.2 Gravity Recovery Test Results	76
	5.3.3 Flotation Recovery Test Results	
16.4	CONCLUSIONS AND RECOMMENDATIONS	77
17.0	MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES	79
17.1		
17.2	WIREFRAME MODELING	80
1′	7.2.1 Lithologic Wireframes	80
1′	7.2.2 Mineralized Zone Wireframes	80
17.3	DOMAINING	80
17.4	COMPOSITING	80
17.5		
17.6	5 SG	86
17.7	GRADE ESTIMATION	86
17.8	RESOURCE CLASSIFICATION	88
17.9		
18.0	OTHER RELEVANT DATA AND INFORMATION	90
19.0	INTERPRETATIONS AND CONCLUSIONS	91
20.0	RECOMMENDATIONS	92
21.0	SIGNATURES	94

List of Tables

Table 1.1	Details of Previous Work by Barrick and Abacus	Page 2
Table 1.2	PGSA - La Manchuria Drill Summary	3
Table 1.3	La Manchuria - Mineral Resource Summary (above a cut-off of 0.75 AuEq (g/t)	3
Table 2.1	List of Abbreviations	6
Table 4.1	Patagonia Gold S.A. – La Manchuria Block Properties	10
Table 6.1	Details of Previous Work by Barrick and Abacus	16
Table 9.1	Selected Gold-Silver Deposits of the Deseado Massif	26
Table 10.1	Trenches Made by PGSA	36
Table 11.1	PGSA - La Manchuria Drill Summary	44
Table 11.2	Phase 1 Drillhole Summary - La Manchuria Project	48
Table 11.3	Phase 1 - Significant Intercepts	49
Table 11.4	Phase 2 Drillhole Summary - La Manchuria Project	51
Table 11.5	Phase 2 - Significant Intercepts	52
Table 11.6	Phase 3 Drill Collar Coordinates - La Manchuria Project	52
Table 11.7	Phase 3 - Significant Intercepts	54
Table 12.1	La Manchuria - Density Determinations - Summary Statistics	60
Table 13.1	Certified Standards Used in La Manchuria QA/QC Program	64
Table 13.2	La Manchuria - Certified Standards Results	66
Table 16.1	Metallic Fire Assay Results	73
Table 16.2	SGS Leach Test Summary	74
Table 16.3	Original ICP Assays Results of the Samples selected for the Concentration and Flotation Test	75
Table 16.4	Gravity and Flotation Head Grades	76
Table 16.5	Gravity Test Results	76
Table 17.1	La Manchuria - Mineral Resource Summary (above a cut-off of 0.75 AuEq (g/t)	79
Table 17.2	La Manchuria - Geological Domain Codes	80
Table 17.3	La Manchuria Mineral Zone - Composites - Summary Statistics	82
Table 17.4	La Manchuria Mineral Zone – Capped Composites - Summary Statistics	83

Table 17.5	La Manchuria Mineral Zone – Capped Oxide Composites - Summary Statistics	84
Table 17.6	La Manchuria Mineral Zone – Capped Hypogene Composites - Summary Statistics	85
Table 17.7	La Manchuria - Density Determinations - Summary Statistics	86
Table 17.8	La Manchuria - Density Values Assigned to Domains	86
Table 17.9	La Manchuria - ID ³ Estimation – Search Parameters	87
Table 17.10	La Manchuria – Mineral Zone Orientations	87
Table 17.11	La Manchuria Mineral Resource Estimate above a 0.75 g/t AuEq Cut-off	89
Table 19.1	La Manchuria - Mineral Resource Summary (above a cut-off of 0.75 AuEq (g/t)	91

List of Figures

Figure 4.1	Desirant Location	Page
Figure 4.1	Project Location	
Figure 4.2	Location of La Manchuria Project Area	
Figure 7.1	Regional Geology of Deseado Massif Santa Cruz Province, Argentina	18
Figure 7.2	La Manchuria Project Area (black rectangle) Geology and Structure	19
Figure 7.3	Structure modified by Nick Callan 2007	21
Figure 7.4	Veins and Veinlets Structure Modified by Nick Callan 2007	21
Figure 7.5	Section N5200 Showing Parallel Structures	22
Figure 8.1	Geochemical Zonation, Quartz Type and Alteration Patterns of Low Sulphidation Hydrothermal System (Hammond 2003)	25
Figure 8.2	Main Quartz Vein in Hole LM-020-D from 121.00 m and 122.50 m	25
Figure 9.1	Cut Slab Showing Crustified Banding in Quartz-rich Vein Material	30
Figure 9.2	Photomicrographs of Vein Mineralization	30
Figure 9.3	Core Sample Showing Crustified Vein Texture.	31
Figure 9.4	Composite Aggregate of Sulphides in Adularia and Quartz	32
Figure 9.5	La Manchuria Structural Pattern (Callan, 2007).	33
Figure 9.6	Photo of the Movement in the Main Zone	33
Figure 10.1	Cross-Section N5475	41
Figure 10.2	Cross-Section N5100	42
Figure 10.3	Areas with Exploration Potential Adjacent at La Manchuria	43
Figure 11.1	La Manchuria Drill holes	45
Figure 11.2	La Manchuria Project Section N5200	56
Figure 13.1	ALS Chemex - Sample Preparation Procedure	63
Figure 13.2	Original vs. Reanalyzed Samples Au (g/t)	67
Figure 13.3	Original vs. Reanalyzed Samples Ag (g/t)	67
Figure 13.4	Metallic Screen Fire Assay Results – Au (g/t)	69

List of Appendices

Appendix 1: QA/QC Control Charts - Certified Standard Results

Appendix 2: QA/QC Control Charts - Reanalyzed Samples

Appendix 3: QA/QC Control Charts - Duplicate Samples

Appendix 4: Au (g/t) Composite Statistics - Histograms and Log-Probability Plots

Appendix 5: Ag (g/t) Composite Statistics - Histograms and Log-Probability Plots

Appendix 6: La Manchuria Mineral Resource Estimate

Appendix 7: La Manchuria Mineral Resource Estimate using Un-Capped Data

vii

1.0 SUMMARY

Micon International Limited (Micon) has been contracted by Patagonia Gold S.A. (PGSA) to generate a Mineral Resource Estimate and to prepare a supporting National Instrument 43-101 compliant technical report on PGSA's La Manchuria Au/Ag project in Santa Cruz Province, Argentina. PGSA is a 100% owned subsidiary of Patagonia Gold Plc which is listed on the London AIM stock exchange.

Thomas C. Stubens, M.A.Sc., P.Eng. a Senior Geologist with Micon International Limited and a Qualified Persons as defined by National Instrument 43-101, prepared this report with input from other individuals as listed in Section 3.0. Mr. Stubens visited the La Manchuria project on January 27 and 28, 2010.

La Manchuria property is located in the Patagonian region of southern Argentina, in the central part of the Province of Santa Cruz, within the Department of Lago Buenos Aires. It is located 85 km north-northeast of the city of Gobernador Gregores.

The La Manchuria deposit is a low-sulphidation epithermal gold and silver system hosted by rhyolitic, dacitic and andesitic tuffs of the Deseado Massif geological province. Mineralized veins and breccias consist of quartz (colloform, banded, and chalcedonic morphologies), adularia, bladed carbonate (often replaced by quartz), and ginguro (dark sulphide material containing fine grained electrum or Ag sulphosalts banded with quartz). Discrete vein deposits develop where mineralizing hydrothermal fluids are focused into dilation zones, producing ore shoots which host the highest precious metal grades.

La Manchuria was discovered by Lac Minerals during a period of intense exploration activity which followed the discovery of the Cerro Vanguardia deposit in the 1990s. Compañía Minera San José de Argentina S.A. (controlled by Lac Minerals) staked the area, in 1991.

In 1994, as a result of the acquisition of Lac by Barrick Gold Corp., ownership of the properties was transferred to Barrick and its Argentinean subsidiaries. Barrick then carried out a program of sampling and trenching.

In 1997 Abacus Minerals Corporation (AMC) signed an agreement with Barrick to acquire 100% ownership of the La Manchuria property rights. AMC contracted Pamicom Ltd. to conduct exploration programs in 1997, 1998 and 1999. The exploration work performed by Abacus and Barrick is summarized in Table 1.1.

Table 1.1
Details of Previous Work by Barrick and Abacus

Detail	Quantity	Period	Company
Prospecting			
Geological Mapping (square kilometres)	30	1996/98	Abacus/Barrick
Rock Sampling	290	1996/99	Abacus/Barrick
Soil sampling	670	1996/99	Abacus
PIMA samples	77	1999	Barrick
Trenching (m)	3,564	1996/98	Abacus/Barrick
Samples	18		
Geophysics		1997/98	Abacus
CSAMT (line km)	8.6		
Ground Magnetic Survey (line km)	27.0		
Induced Polarization (line km)	8.2		
Area (ha.)	270		
Drilling			
Diamond Drillholes	14	1997/98	Abacus
Metres drilled	2,017		
Samples	1,257		
Reverse Circulation Holes	8	1999	Barrick
Metres drilled	1,089		
Samples	477		

In 2001 Abacus decided to terminate the exploration agreement and return the properties to Barrick.

Considering the soil and rock geochemistry, the geophysics and the interpretation of the satellite images Dean Williams concluded his report deducing the possible existence of a movement of mineralizing fluids coming from the southeast (at depth) and ascending in a northwesterly direction. In Williams' opinion, the Main, Eastern and Northern zones are the surface expression of this mineral trend.

A 2,200 m drilling program was proposed to test this theory but was never carried out by Barrick.

PGSA signed the Purchase Agreement to acquire the La Manchuria property from Barrick in February, 2007. The exploration work carried out by PGSA includes:

- Geological mapping of about 8,950 ha and collection of 98 rock samples.
- Trenching of about 153 m and 91 channel samples taken.
- Re sampling of historical DDH holes with 73 samples.
- Re sampling of soil with 11 samples.

• A 3 Phase drilling program consisting of 104 holes totalling 17,847.55 m, as summarized in Table 1.2.

Table 1.2 PGSA - La Manchuria Drill Summary

Phase	Period	Holes	RC (m)	DD (m)	Total (m)
1	Jan-Apr/08	20	0.00	3,974.45	3,974.45
2	Sept-Dec/08	20	1,717.00	2,401.50	4,118.50
3	Sept/08 - Feb/10	64	0.00	9,754.60	9,754.60
Total		104	1,717.00	16,130.55	17,847.55

The La Manchuria deposit was modeled based on cross-sectional interpretations generated by PGSA geologists. Seventeen cross-sections were generated at an orientation of 60°, spaced approximately 25 m apart and covered a 375 m strike length of the La Manchuria vein system.

A rotated block model was built using Datamine 3D modeling software. The model extended 50 m northwest and southeast of the cross-sectional interpretations thus containing a volume 475 m along strike (X, azimuth 150°), 370 m across strike (Y, azimuth 60°) and 300 m in the vertical direction (Z). The blocks were 5 m by 1 m by 5 m in the X, Y & Z directions, respectively.

Inverse-distance cubed (ID³) was used to estimate the grades of gold and silver. The Mineral Resource above a break-even cut-off grade of 0.75 g/t gold equivalent (AuEq) is summarized in Table 1.3.

Table 1.3
La Manchuria - Mineral Resource Summary (above a cut-off of 0.75 AuEq (g/t)

Indicated		Grade (g/t)			Metal (Oz)		
Domain	Tonnes	Au	Ag	AuEq	Au Ag		AuEq
Oxide	141,570	1.91	139.1	3.12	8,675	633,338	14,198
Hypogene	284,136	3.46	133.0	4.54	31,642	1,214,873	41,486
Total	425,705	2.95	135.0	4.07	40,317	1,848,211	55,684
Inf	erred		Grade (g/t	:)		Metal (Oz)	
Domain	Tonnes	Au	Ag	AuEq	Au Ag AuE		
Oxide	496,179	1.33	42.5	1.66	21,138	678,485	26,462
Hypogene	972,840	1.64	53.0	2.05	51,197	1,656,751	64,220
Total	1,469,020	1.53	49.4	1.92	72,335	2,335,236	90,682

The following economic assumptions were used in calculating the AuEq grade of each block:

Gold Price: \$US 925/oz Gold recovery: 95% Silver Price: \$US 14.50/oz Silver Recovery: 60%

Where:

1) Metal Value = Grade * Metal Price * Metallurgical Recovery * 0.032151

2) AuEq = (Au-Value + Ag-Value) / (Au-Price * 0.032151)

The resources in this report were estimated in accordance with the definitions contained in the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Standards on Mineral Resources and Reserves Definitions and Guidelines that were prepared by the CIM Standing Committee on Reserve Definitions and adopted by the CIM Council on December 11, 2005.

Preliminary metallurgical tests, including bottle-roll cyanide leach, gravity and flotation tests, have been performed on samples of La Manchuria mineralization. All three operations recover gold and silver to a greater or lesser degree. The best results were achieved in the leach tests: 97% recovery of gold to solution. Silver head grades and recoveries were highly variable with silver leach recoveries ranging between 90% and 42%.

2.0 INTRODUCTION

Micon International Limited (Micon) has been contracted by Patagonia Gold S.A. (PGSA) to generate a Mineral Resource Estimate and to prepare a supporting National Instrument 43-101 compliant technical report on PGSA's La Manchuria project in Santa Cruz Province, Argentina. PGSA is a 100% owned subsidiary of Patagonia Gold Plc which is listed on the London AIM stock exchange. Data contained in this report are drawn from original work by PGSA, unpublished data from former owners and explorers (Barrick). The report includes data and analysis from contractors, consultants, certified laboratories and PGSA staff.

2.1 QUALIFIED PERSONS

Thomas C. Stubens, M.A.Sc., P.Eng., a Senior Geologist with Micon International Limited and a Qualified Persons as defined by National Instrument 43-101, prepared this report with input from other individuals as listed in Section 3.0. Mr. Stubens visited the La Manchuria project on January 27 and 28, 2010.

Michael Godard, P.Eng., a Senior Metallurgist with Micon International Limited and a Qualified Persons as defined by National Instrument 43-101, prepared metallurgical section 16 from a summary of lab tests developed by Patagonia and SGS Minerals Service. Mr. Godard has not visited the La Manchuria site.

2.2 CONVENTIONS

All references to dollars (\$) in this report are in US dollars unless otherwise noted. Distances, areas, volumes, and masses are expressed in the metric system unless indicated otherwise

2.3 UNITS AND ABBREVIATIONS

For the purpose of this report, all common measurements are given in metric units. All tonnages shown are in metric tonnes (1,000 kilograms) and precious metal values are given in grams per metric tonne (g/t). To convert to English units, the following factors should be used:

```
1 metric tonne (t)
                         1.103 short tons
1 gram (g)
                         0.032 troy ounces
                         0.029 troy ounces/short ton
1 gram/tonne (g/t)
                         0.394 inches
1 centimetre (cm)
1 metre (m)
                         3.281
                                feet
1 kilometre (km)
                         0.621 miles
1 hectare (ha)
                         2.469
                                acres
```

A list of abbreviations used in this report is shown in Table 2.1.

Table 2.1 List of Abbreviations

Abbreviation	Unit or Term
AARL	Anglo American Research Laboratory
AA	atomic absorption
Ag	silver
ARD	acid rock drainage
AR\$	Argentinean peso
As	arsenic
Au	gold
CAM	Chlumsky, Armbrust and Meyer, L.L.C.
CIC	carbon in column
C-I-L	carbon in leach
°C	degrees Celsius
Cu	copper
EIA	Environmental Impact Assessment
gm or g	gram
g/t	grams per tonne
g/cc	grams per cubic centimetre
GIS	geographic information system
GPS	global positioning system
ha	hectare
HCl	hydrochloric acid
IP	induced polarization (geophysical survey)
ICP-ES	Inductively Coupled Plasma-Atomic Emission Spectrometer
ISO	International Organization for Standardization
kg	kilogram
km	kilometre
kt	1,000 tonnes
lb	pound
m	metre
μm	micron
M	million
Ma	million years before present
NGO	Non-governmental Organization
NI 43-101 or 43-101	Canadian Securities Administrators' National Instrument 43-101
ounce or oz	troy ounce
PGD	Patagonia Gold Plc
PGSA	Patagonia Gold S.A.
ppb	parts per billion
ppm	parts per million
Project	La Manchuria Project
QA	quality assurance
QC	quality control
RC	reverse circulation
RFP	Request for Proposal
RQD	rock quality designation
Std. Dev.	standard deviation
t or tonne	metric tonne
TSF	tailings storage facility
UG	underground
US\$	United States dollars
y or yr	year
/	per

3.0 RELIANCE ON OTHER EXPERTS

Micon has reviewed and analyzed data provided by PGSA and has drawn its own conclusions, augmented by its direct field examination. Micon has not carried out any independent exploration work, drilled any holes or carried out any sampling and assaying on the La Manchuria property. During the field visit to La Manchuria, Micon did not collect any samples to confirm the mineralization as any samples collected by Micon would only reflect the mineralization at the sample location and not necessarily the economic nature of the mineralization at the project.

While exercising all reasonable diligence in checking, confirming and testing, Micon has relied upon PGSA's presentation of the La Manchuria data from both itself and previous organizations in formulating its opinion.

Micon has not reviewed any of the documents or agreements under which PGSA holds title to the La Manchuria property or the underlying mineral concessions and Micon offers no legal opinion as to the validity of the mineral titles claimed. A description of the properties, and ownership thereof, is provided for general information purposes only. PGSA has confirmed the material presented in Section 4.2 of this report. The existing environmental conditions, liabilities and remediation have been described where required by NI 43-101 regulations. These statements also are provided for information purposes only and Micon offers no opinion in this regard.

The descriptions of geology, mineralization and exploration are taken from reports prepared by PGSA, its predecessors or its consultants. The conclusions of this report rely on data available in published and unpublished reports and information supplied by the organizations which have conducted exploration on the property, and information supplied by PGSA and its consultants. In Micon's opinion, the information provided to PGSA was supplied by reputable organizations and Micon has no reason to doubt its validity.

(Other persons beside the undersigned provided data for this report. These included Gabriel Irusta, BSc Geology, Senior Geologist of PGSA, and the La Manchuria Project Geologist, Guillermo Hansen, BSc Geology.)

PGSA retained Environmental consultants:

- Vector Argentina S.A. to complete an application for the renewal of this EIA.
- BEHA to prepare independent reports discussing the results of PGSA's quarterly baseline water samples program.

4.0 PROPERTY DESCRIPTION AND LOCATION

4.1 LOCATION

La Manchuria project is located in the Patagonian region of southern Argentina, in the central area of the Province of Santa Cruz, within the Department of Lago Buenos Aires. It is located 85 km north-northeast, in a straight line, of the city of Gobernador Gregores.

The property can be accessed by road from Gobernador Gregores by driving 40 km east along Provincial Route 25, 65 km north along Provincial Route 12 to the derelict town of "Hotel Los Manantiales" and then following secondary roads towards the northwest for approximately 40 km.

The La Manchuria project area is located inside the Estancia La Pilarica surface property. The main house of this Estancia is located 10 km away from the project. The Estancia La Pilarica comprises a main farmhouse and several outbuildings which provide space for an exploration base camp, including logging, core cutting, sample preparation, and core storage facilities.

The house and warehouse at Estancia La Pilarica have been rented to be used as lodging, office and warehouse, and all the work related to the collection of the samples (core cutting and dispatching) is carried out from there.

Infrastructure improvements to the property include a graded single track road and several secondary side access trails to drilling platform areas. There are no mineral reserves, historic mine workings, tailings, tailings ponds, or waste deposits in the Project area.

4.2 MINERAL TENURE AND TITLE

4.2.1 La Manchuria Project-Patagonia Gold S.A. - Exploration Claims

The La Manchuria project consists of 5 (five) contiguous mining properties, 100% owned by PGSA:

```
MD. René (File # 403.860-B-97).

MD. Sofía I (File # 403.861-B-97).

MD. Jenny (File # 403.859-B-97).

MD. Sandrita (File # 403.858-B-97).

MD. Marielita (File # 405.402-MR-05).
```

A "Manifestacion de Descubrimiento" (MD), meaning a Manifestation of Discovery, is an advanced form of tenure based on the demonstration of the existence of mineralization within the area of interest and whereby once the required work is completed and payments made, it can be transferred into a series of claims ("Pertenencias") which collectively constitute a mining claim or 'Mina'.

Ea. La Pilarica

Figure 4.1 Project Location

The maximum area of each MD is 3,000 ha for which the application can be made at any time during the term of the preceding cateo (exploration claims) but must be made before the expiry of the cateo. MD are initiated upon payment of "canon fees" of AR \$400 per unit payable upon the application for the area whereby the canon fee is due three years after the issuance of the MD by the provincial government.

The tenure for each MD is renewed annually pending payment of the annual fees and provided that exploration work throughout the claim is completed each year. The total area covered by the La Manchuria block of properties is 5,575 ha or 55.75 square kilometres.

In accordance with the Argentine mining code, all of the exploration properties are spatially registered in the Gauss Kruger Projection and Campo Inchauspe datum system in the corresponding longitudinal belt defined between 68°-70° West (Faja 2). The location of the La Manchuria Project area with respect to the Sofia I MD and Jenny MD claim is displayed in Figure 4.2. The coordinates for the vertices of each property are provided in Table 4.1.

Figure 4.2 Location of La Manchuria Project Area

Table 4.1
Patagonia Gold S.A. – La Manchuria Block Properties

Property	File N°	Type	Area (ha)
René	403860-B-97	MD	1,000.00
Sofia I	403861-B-97	MD	1,000.05
Jenny	403859-B-97	MD	999.95
Sandrita	403858-B-97	MD	575.00
Marielita	405402-MR-05	MD	2,000.00

The claim titles are current and renewed annually by fee. The renewal is contingent on continued exploration work on the claim within each year. All the MD's are within the legal period prior to which PGSA has to survey individual concessions (pertenencias) so as to eventually constitute a mining concession or 'Mina'.

4.3 SURFACE RIGHTS AND OBLIGATIONS

Surface rights in Argentina are not associated with title to either a mining lease or exploration claim and must be negotiated with the landowner.

The surface rights on the Main Zone belong to the land owners of Estancia La Pilarica (Silvia Serra) and of Estancia La Aragonesa (Mr. Francisco Samitier). In September 2009 PGSA signed a new access and exploration agreement with Ms. Silvia Serra, which permits surface land access, exploration, use of water and drilling for a two year period. The agreement is renewable for additional 2 year periods.

According to the agreement, PGSA must abide by the regulations and commitments detailed in the Environmental Impact Assessment (EIA) for the Project.

There are no exploration activities on Estancia La Aragonesa, therefore no access and exploration agreement has thus far been signed with its owner Mr. Francisco Samitier.

4.4 MINERAL PROPERTY ENCUMBRANCES

The La Manchuria claim block was acquired as part of a Purchase Agreement, signed in February 2007, between PGSA and the Argentinean subsidiaries of Barrick Gold Corporation (Barrick), Minera Rodeo S.A. and Barrick Exploraciones S.A.

Terms and conditions of this Purchase Agreement include:

- 1. A minimum US\$10,000,000 commitment of approved exploration expenditures within a period of five years, of which US\$1,500,000 must be invested during the first 18 months. PGSA has notified Barrick's subsidiaries advising them that the minimum investment commitments of US\$1,500,000 and U\$10,000,000 have been exceeded as of December 31, 2007 and December 31, 2008 respectively. There are no remaining investment commitments.
- 2. PGSA is required to provide an annual year-end mineral resource statement completed by an independent qualified person and the data used in the generation of the mineral resource estimates.
- 3. Barrick's Argentine subsidiaries hold a "back-in right" to acquire up to 70% of any individual property group included in the Purchase Agreement upon written notice, within 90 days of the completion of a NI 43-101 compliant delineation of a two million ounce gold or gold equivalent Indicated Resource, within the respective property group. This is on a forward looking basis which does not include any resources or reserves produced or undergoing development. Upon exercise of the "back-in right" PGSA must transfer the property group to a separate joint-venture corporation ("JV Company") which will be free from any and all encumbrances. The back-in right will survive any sale by PGSA of any portion of the property group.
- 4. The five mining properties comprising the La Manchuria block are deemed to be included jointly together with the El Tranquilo block of properties for all matters of the Purchase Agreement.

As an integral part of both Barrick's and PGSA's due diligence it was verified that there are no other mineral property encumbrances over the Project or block of properties.

4.5 ENVIRONMENTAL LIABILITIES

No previous mining or significant exploration activity has been conducted on the La Manchuria block. To the best of Micon's knowledge, the property is not subject to any environmental liabilities related to exploration or mining activities.

4.6 PERMITS

Micon understands that work on the La Manchuria Project has been conducted in accordance with an approved Environmental Impact Assessment (EIA) for the La Manchuria Project block. The EIA was granted on August, 2008 and has an effective duration of two years. PGSA retained Vector Argentina S.A. to complete an application for the renewal of this EIA which was submitted in June, 2010. Approval is expected by September, 2010.

In the EIA, the items listed are those requested by Appendix II of National Mining Law No. 24.585. The EIA takes into account the existing, as well as the proposed, mineral exploration phase, enforcing environmental control measures to mitigate such impacts.

It is understood that PGSA has been collecting quarterly baseline water samples at designated points across the Project area since May, 2007, and a private consultant (BEHA) has been retained to prepare independent reports discussing the sampling program. Results of these studies were included in the newly-presented EIA for the Project and submitted to the pertinent authorities.

It is also understood that PGSA has obtained the relevant permits, issued by the pertinent government water resources authority of Santa Cruz Province, for the use of water during the drill campaigns and that no other permits are required for the continuation of exploration and/or definition drilling within the property block.

5.0 CLIMATE AND TOPOGRAPHY, ACCESS AND INFRASTRUCTURE, ENVIRONMENTAL AND SOCIAL ISSUES

5.1 TOPOGRAPHY, CLIMATE, VEGETATION AND WILDLIFE

The project is situated in an area of elevated relief where the elevation varies from 625 to 710 metres above sea level. The mineral property is a topographic high, rising approximately 100 m above the general surface relief, bordered to the north and east by plains covered by "rodados patagónicos" gravel and rock covered terrain, typical of Patagonia and to the west by a basaltic plateau, 800 metres above sea level.

The summer climate is typically, warm and dry. Spring is windy and cool, with temperatures ranging between 0 and 15 degrees Celsius.

Winters have severe snowfalls which make field activities difficult, so the annual break is planned during this season. Minimum temperatures reach -20° C. Precipitation comes mainly in the form of snow with lesser amounts of rain. The average annual precipitation is less than 300 millimetres.

Flora are typical of the Patagonia steppe, low pasture and bush like, with species as Stipa sp, Poa sp and Festuca sp called by the dwellers as "Coiron". Other species are: Neneo (Mulinum sp), Calafate (Berberis sp), Senecio (Senecio sp), Zampa (Atriplex sp), and Mata Negra (Verbena sp).

The native fauna consist of guanacos (Llama Guanicoe), American ostrich (Rhea Americana), grey (Dusicyon griseus) and red foxes (Dusicyon culpaeus), piches Zaedyus pichiy, peludos (Chaetophracus villosus), occasionally Patagonia hare (Dolichotis patagonum).

5.2 ACCESS AND INFRASTRUCTURE

The access to the project site from the main house of Estancia La Pilarica is through internal roads with 4 wheel drive vehicles all year around.

The access roads to the project are traversed with four wheel vehicles, through existing or new roads opened by PGSA

The closest communities to the project area are the towns of Gobernador Gregores, population of 3,000 inhabitants, located about 100 km south of the project and Perito Moreno, population 4,000 located about 180 km north-northeast of the project. The nearest large city to the project is Comodoro Rivadavia (about 100,000 inhabitants) located on the Atlantic coast, approximately 400 km to the Northeast, in the province of Chubut.

Most of the supplies for the project are obtained or purchased from the towns of Gobernador Gregores and Perito Moreno.

The local workforce is mainly composed of unskilled and inexperienced workers who have been trained by experienced PGSA personnel. Several producing mines operate in the region of Gobernador Gregores, although many of the experienced or professional workers come from other towns in other provinces.

5.3 ENVIRONMENTAL AND SOCIAL RESPONSIBILITY

As described in Section 4, exploration has been conducted in accordance with an approved Environmental Impact Assessment (EIA). The Santa Cruz Provincial Mining Directorate's agents together with representatives from the local communities have inspected PGSA's exploration activities, specifically during drilling, and have reportedly expressed satisfaction as to the manner in which the company has carried out operations.

Although once a large wool and mutton producing region, the project area is currently uninhabited, destocked, and unproductive as a result of overgrazing, gradual desertification, and severe loss of productivity following the 1991 eruption of the Hudson Volcano in Chile. To the extent that it is practical, PGSA utilizes local communities to source food, accommodation, fuel, minor vehicle repairs and field labour. More specialized goods and services must be obtained in Caleta Olivia (Santa Cruz), Comodoro Rivadavia (Chubut) and Buenos Aires. The local workforce comprises mainly unskilled workers who receive safety, environmental and exploration methodology training. Senior project management and engineering positions are generally filled by professionals from outside the local communities.

Since acquiring the properties in Santa Cruz, PGSA has contracted Vector Argentina S.A. as a consultant for community relations throughout the Santa Cruz Province and recently has incorporated relevant qualified personnel. Under their auspices, public relation meetings have been conducted with provincial and local authorities as well as inhabitants of the nearby communities, which involve open-forum discussions focused on industry best practice policies and social responsibility.

6.0 HISTORY

6.1 EARLY HISTORY

The Deseado Massif geological province saw little mineral exploration activity before the discovery of the Cerro Vanguardia deposit in the 1990s. There followed a period of intense exploration activity during which Lac Minerals identified the area, of the present day La Manchuria project, as prospective. Until that time, the geological knowledge of the Deseado Massif was very limited.

6.2 ABACUS-BARRICK EXPLORATION

Compañía Minera San José de Argentina S.A. (controlled by Lac Minerals) staked the area with mining properties, in 1991 and named the project "Cerro Tejedor". In 1994, as a result of the acquisition of Lac by Barrick Gold Corp., ownership of the properties was transferred to Barrick and its Argentinean subsidiaries. Barrick then carried out a program of sampling and trenching supervised by the geologist Oscar Nuñez and the project was re-named "La Manchuria".

In 1997 Abacus Minerals Corporation (AMC) signed an agreement with Barrick to acquire 100% ownership of the La Manchuria property rights. AMC contracted Pamicom Ltd. to conduct exploration programs in 1997, 1998 and 1999.

During the 1997/98 field program, AMC excavated new trenches, collected soil samples, mapped the area and drilled 14 diamond drillholes totalling about 2,015 m. During this period Quantec Geofisica Argentina S.A carried out a geophysical survey focusing on the central part of the property, covering the Western, Main, and Eastern zones and consisting of:

- Time Domain Induced Polarization (TDIP), 7.2 km.
- Magnetometer, 27.02 km.
- Controlled-Source Audio-Frequency Magnetotellurics (CSAMT), 8.6 km.

During 1999, Abacus drilled seven reverse circulation (RC) holes in the area known as Main Zone and one hole in the Southern Zone for a total of 1,089 m.

Finally, in 2001 Abacus decided to terminate the exploration agreement and return the properties to Barrick. The geologist Dean K. Williams prepared a compilation report on the exploration information for Barrick as shown in Table 6.1.

Table 6.1
Details of Previous Work by Barrick and Abacus

Detail	Quantity	Period	Company
Prospecting			
Geological Mapping (square kilometres)	30	1996/98	Abacus/Barrick
Rock Sampling	290	1996/99	Abacus/Barrick
Soil sampling	670	1996/99	Abacus
PIMA samples	77	1999	Barrick
Trenching (m)	3,564	1996/98	Abacus/Barrick
Samples	18		
Geophysics		1997/98	Abacus
CSAMT (line km)	8.6		
Ground Magnetic Survey (line km)	27.0		
Induced Polarization (line km)	8.2		
Area (ha.)	270		
Drilling			
Diamond Drillholes	14	1997/98	Abacus
Metres drilled	2,017		
Samples	1,257		
Reverse Circulation Holes	8	1999	Barrick
Metres drilled	1,089		
Samples	477		

Considering the soil and rock geochemistry, the geophysics and the interpretation of the satellite images Dean Williams concluded his report deducing the possible existence of a movement of mineralizing fluids coming from the southeast (at depth) and ascending in a northwesterly direction. In Williams' opinion, the Main, Eastern and Northern zones are the surface expression of this mineral trend.

A 2,200 m drilling program was proposed to test this theory but never carried out by Barrick.

7.0 GEOLOGICAL SETTING

7.1 REGIONAL SETTING

The La Manchuria project is found in the Deseado Massif geological province, which occupies a 70,000 km² area in the northern third of Santa Cruz Province. The geology of Santa Cruz has been mapped and compiled at a scale of 1:750,000, and published by SEGEMAR in 2003.

The Deseado Massif and a second uplifted block, the Somuncura Massif (exposed in Chubut and Rio Negro Provinces to the north), are interpreted to have developed during large-scale continental volcanism accompanying extensional rifting of the Gondwanaland supercontinent and the opening of the Atlantic Ocean (Feraud et al., 1999). The bedrock comprises a bimodal suite of andesitic to rhyolitic ignimbrites and tuffs, with lesser quantities of flows and intrusions, which were erupted over a 50 million year interval in the middle to late Jurassic (125 to 175 Ma). Its areal extent places this geological province amongst the most extensive rhyolite platforms worldwide. The Deseado Massif is bordered by two Cretaceous petroliferous basins, the San Jorge Basin to the north, which separates it from the Somuncura Massif, and the Austral-Magallanes Basin to the south. These basins contain thick sequences of non-marine sedimentary rocks which host Argentina's largest producing oil and gas fields.

Middle to Late Jurassic represents the most important period of activity tectonic and magmatic which is responsible for the epithermal extensional style mineralization, developed in the Massif.

The basement is composed of a N-S oriented system of fault blocks. These blocks define the most important structures of the Deseado Massif, as regards the associated mineralization. These structures are related to the combination of compression as well as of extension which took place during the Mesozoic period. During the Jurassic extension, two main structural events developed fractures; the cluster known as "El Tranquilo" north-northwest (330°) with connective faults at 60° and the Bajo Grande approximately west-northwest (300°) with connective faults at 30°; both cases revealed the left-lateral movement. (Panza; 1982 and 1984).

Within the project area, the Jurassic volcanic suite is comprised dominantly of rocks assigned to the Bahia Laura Group. The volcanic stratigraphy of the Bahia Laura Group is the best exposed rock sequence in the Deseado Massif, covering more than half of its area, and comprises three formational members:

Bajo Pobre Formation (175-166 Ma): andesitic to basaltic flows, agglomerates, and minor hypabyssal porphyry intrusives which intercalate upwards with mafic tuffs, conglomerates and sediments. Olivine basalts common in the lower part of the formation are thought to be products of fissure eruptions from rifts related to early stages of the Gondwana breakup and continental separation.

<u>Chon Aike Formation (166 – 150 Ma):</u> high-Si, high-K rhyolitic to rhyodacitic ignimbrites, tuffs and lesser volcanic breccias, flows and domes which attain a cumulative thickness of up to 1,200 m (Sanders, 2000). Volcanic rocks assigned to the Chon Aike Formation are coincident in space and time with the most significant precious metal deposits in the province.

<u>La Matilde Formation (upper age of approximately 142 Ma):</u> fine grained fossiliferous lacustrine sediments, volcano-sedimentary rocks and airborne tuffs.

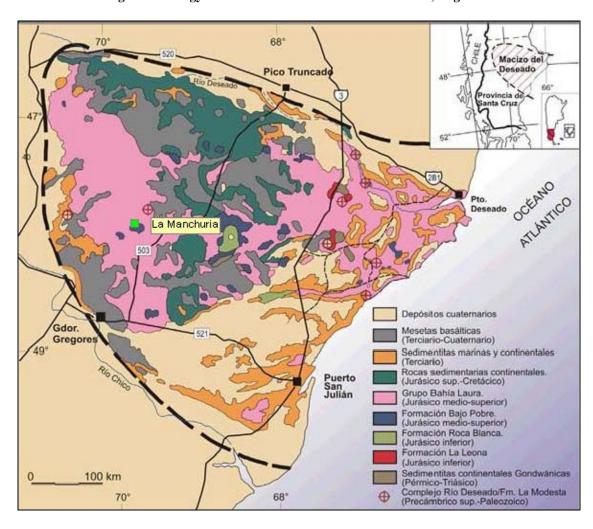


Figure 7.1
Regional Geology of Deseado Massif Santa Cruz Province, Argentina

The Bahia Laura Formation is underlain by an extensive sequence of basement rocks ranging in age from Precambrian to early Jurassic. Younger cover sequences include small windows (less than 300 m in diameter) of flat-lying Tertiary marine sediments (which have filled structural controlled and/or erosional basins) and alkalic basalts, which form extensive plateaus throughout the region. Finally, unconsolidated Quaternary glaciofluvial sediments form characteristic elevated gravel terraces throughout the province.

In a regional structural sense, northwest-southeast extensional faults active during the period of Jurassic volcanism formed grabens, half-grabens and horst blocks with pervasive eastern dips. Since the Jurassic, rocks have been cut by normal faults that probably represent reactivated basement fracture zones. The Jurassic rocks have undergone only minor subsequent deformation and remain relatively flat to gently dipping, except on a local scale proximal to faults and subvolcanic intrusions.

Fault kinematics throughout both the La Manchuria Project and the surrounding region are consistent with regional east-west to northeast-southwest extension as has been documented for many low sulphidation, epithermal precious metal deposits throughout the province.

7.2 PROPERTY GEOLOGY

7.2.1 Stratigraphy

Bedrock in the La Manchuria Project comprises a thick (greater than 500 m) sequence of rhyolitic ignimbrite and tuff units of the Chon Aike Formation, overlain by a thin veneer of Oligocene to Miocene shallow marine calcarenite sediments of the Centinela Formation and unconsolidated Quaternary glaciofluvial gravels. The surface and subsurface distribution of these bedrock units, as defined by mapping and drilling, is shown in Figure 7.2.

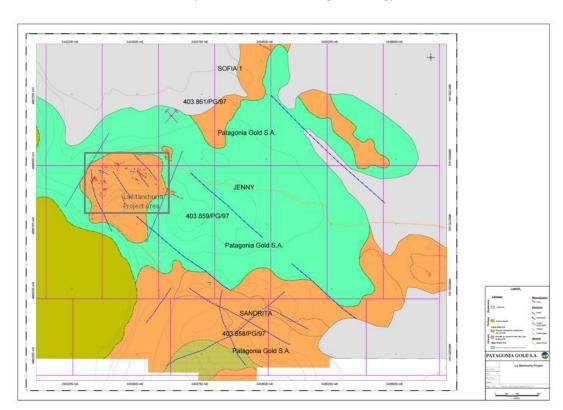


Figure 7.2 La Manchuria Project Area (black rectangle) Geology and Structure

Within the project area, the depositional sequence began in the Middle Jurassic with the explosive deposition of massive fine grained, intermediate pyroclastic rocks of the Bajo Pobre Formation. These are overlain by the Bajo Negro Formation, a thin pyroclastic sequence filling depressions in the paleo surface. This sequence is in-turn overlain by fine to medium grained, intermediate to felsic pyroclastic rocks of the Chon Aike Formation. The sequence grades upwards into medium to coarse grained felsic rocks and welded (moderate to strong) rhyolitic flows including lapilli tuffs. (See Figure 7.2, above.) These pyroclastic rocks are sub horizontal and dipping 10° to the SSW.

On the sequence described above, ash fall and tuff have been recognized represented by lithic clasts (> 20 mm) with chaotic deposition including a fine organic layer possibly related to Lahar deposits from the Matilde Formation.

The Jurassic units are covered unconformably by Tertiary sandstone and mudstone of the Santa Cruz Formation. At the end of this depositional cycle, a cap of Olivine Basalt was developed originating from Cerro Tejedor.

The Jurassic units were cut by a sub vertical north-northwest-trending cluster of faults and fractures, characterized by chalcedony and/or thin saccharoidal quartz fracture-fillings as shown in Figure 7.3 and described by Callan (2007).

This fault system generated the conditions for developing a "sub parallel cluster of shallow epithermal veins and veinlets", which was affected by post-mineral tectonism represented in the field by the Pancho Fault.

7.2.2 Structural Geology

7.2.2.1 Surface Structure

The regional structure seen at La Manchuria is the typical Deseado Massif structural trend preferentially oriented at 315° as shown above in Figure 7.2. The regional trend is intersected by less common structural corridors oriented 20° and N-S 360°.

Locally the structure is composed of a principal structural corridor 310°-320° with numerous parallel faults, fractures and joints. Figure 7.3 was generated using satellite image interpretation and mapping of the principal structures present in La Manchuria project.

In the field it is possible to identify the 310° to 320° fault trend which is directly related to the orientation of the main veins. That relationship is more evident in the central portion of the main zone and less clear in the northwest continuation. To the southeast of the main zone there is a large and abrupt change in the topography after which it is not possible to trace the structures due to the unconsolidated quaternary regolith covering the area.

4,665,000 mN

La Manchuria
Main Zone
NV extension

La Manchuria
Main Zone
NV extension

Cover

References
Faults
Linement
Veins and veinlets

2375
Q 0.25 0.5
kilometres

Figure 7.3 Structure modified by Nick Callan 2007

Observed in detail, the orientation of the veins in the mineralized zone of La Manchuria is primarily 315°. There are small populations of veins oriented at 340° and 290° and very few striking N/S (Figure 7.4).

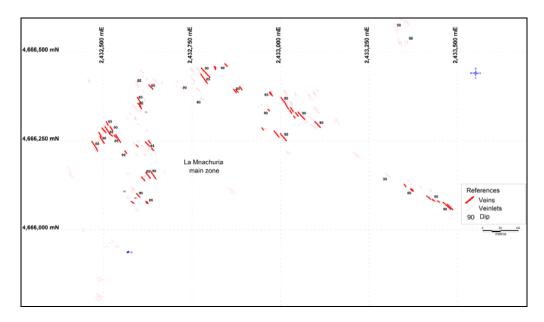


Figure 7.4
Veins and Veinlets Structure Modified by Nick Callan 2007

In terms of the inclination of the veins and veinlets, the most common dip is sub-vertical ranging between 80° and 90° to the northeast. There are no structures in the La Manchuria project with dips in outcrop of less than 80° .

7.2.2.2 Subsurface Structure

Subsurface vein orientations cannot be confirmed since oriented core was not collected. However, the majority of vein, veinlet, fault and joint orientations, relative to the core axis, were between 45° and 55°. After accounting for the azimuth and dip of the drillholes, this translates into dips of 80° to 90°.

Further analysis, in cross-section, proved that the correlation of the main faults between holes connected them in a general orientation of 310° to 320°, similar that seen on surface. The correlation of the main fault and fractures in cross-section shows a package of parallel structures. The principal fault at La Manchuria is the Pancho Fault which follows the contact between the rhyolite tuff and the dacite tuff. The fault contact is a wide gouge zone which dips at different angles, depending on the depth below surface. Near to surface, the fault dips steeply to the northeast at (70-80°) and flattens to about 45° at depth. Another major structure is the F1 fault. It is an old sub-vertical fault, interpreted to have generated the original basin, which was then filled with pyroclastic sequences. (Figure 7.5).

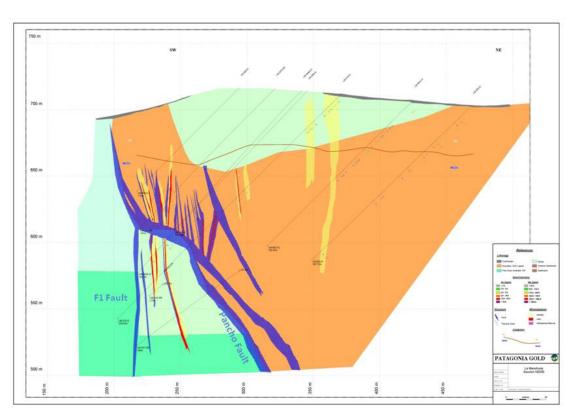


Figure 7.5 Section N5200 Showing Parallel Structures

Phase 2 and 3 holes, drilled to test the southeast continuity of the La Manchuria mineralized veins, intersected a structural zone of parallel faults and fractures and defined a package of veins and veinlets. The package was delimited by at least one main fault (commonly the contact between rhyolite and andesite) in the west and was open to the east.

The core shows the presence of fractures, fault and crush zones. Many of the fault zones contain breccias that include clasts of vein material and many of the veins have been crushed during or after emplacement. Low angle 35° to 45° hade cross-vein crush zones are present and appear to represent normal faults with large movement. The effect of this is to widen the corridor of veining laterally by compressing the vein zones vertically.

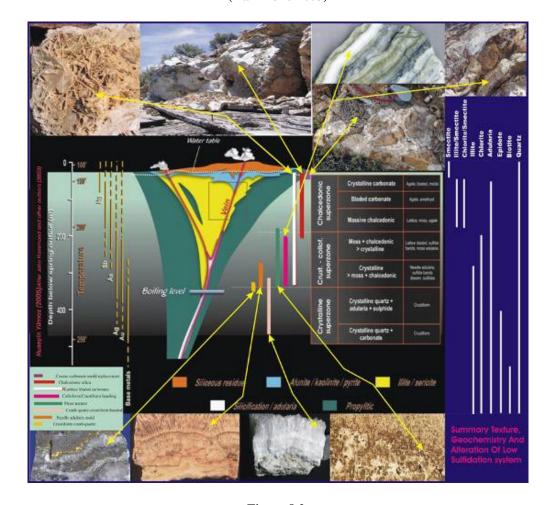
The vertical to 60° dipping faults are normal and drop down to the east. Crush zones running down faults were initiated during vein opening in the absence of silica fluids and thus propagated dry, without silica cementation.

At times a fault breccia is associated with the main faulted contact between two principal lithologies. This breccia was described as dacitic breccia with lithic clasts in a black silica matrix containing abundant fine sulphides and disseminated pyrite. Sometimes it is a crackle breccia, filled with black sulphides and fine saccharoidal silica intercalated with rhyolitic lapilli tuff clast. In a few cases, monomictic sub angular clasts are combined with andesitic breccias composed of andesite clasts in a black silica matrix containing fine disseminated sulphides and fresh pyrite appears in the contact.

8.0 DEPOSIT TYPES

The gold and silver mineralization in the La Manchuria Project is clearly of a low-sulphidation epithermal style (Morrison, 1990) hosted in an extensional-type structure, in rhyolitic, dacitic and andesitic tuffs. Mineralized veins and breccias consist of quartz (colloform, banded, and chalcedonic morphologies), adularia, bladed carbonate (often replaced by quartz), and ginguro (dark sulphide material containing fine grained electrum or Ag sulphosalts banded with quartz). Discrete vein deposits develop where mineralizing hydrothermal fluids are focused into dilation zones, producing ore shoots which host the highest precious metal grades. Low sulphidation style mineralization can also develop where mineralizing fluids flood permeable lithologies to generate large tonnage, low grade disseminated deposits (e.g. Round Mountain, Nevada; McDonald Meadows, Montana).

Studies of alteration patterns and fluid inclusion data show that precious metal precipitation generally occurs between 180 to 240 degrees Celsius, corresponding to depths 150 to 450 m below the paleosurface (Figure 8.1). Deposits often exhibit a top to bottom vertical zonation:


- Precious metals poor, paleosurface, sinter (Hg-As-Sb).
- Au-Ag-rich, base metal poor "bonanza zone" (Au-Ag-As-Sb-Hg).
- Ag-rich, base metal zone (Ag-Pb-Zn-Cu).
- Barren pyritic root.

Alteration accompanying low sulphidation epithermal mineralization is controlled by the temperature and pH of the circulating hydrothermal fluids and its distribution therefore can also be spatially zoned. Alteration minerals that occur proximal to mineralization include illite, sericite, calcite and adularia whereas smectite and chlorite typically occur in a more distal setting. Additional variants include pervasive silicification of wall rock as envelopes to quartz veins and breccias, and advanced argillic alteration (alunite, jarosite, kaolinite, vuggy silica) in steam heated horizons at higher structural levels (Figure 8.1).

It has been proposed that the deposition of the gold metals and silver sulphosalts occurred from the cooling and/or mixing between meteoric water and hydrothermal fluids (P. Ash) through the various existing channels, as well as through the reactivity of the rhyolite (better reaction) or dacite and andesite (low gold and silver values), which would have generated the diverse textures previously described.

Figure 8.1 Geochemical Zonation, Quartz Type and Alteration Patterns of Low Sulphidation Hydrothermal System (Hammond 2003)

 $Figure~8.2 \\ Main~Quartz~Vein~in~Hole~LM-020-D~from~121.00~m~and~122.50~m \\$

9.0 MINERALIZATION

9.1 REGIONAL MINERALIZATION

The Deseado Massif volcanic province hosts several producing and advanced stage projects (Table 9.1).

Table 9.1 Selected Gold-Silver Deposits of the Deseado Massif

Deposit	Past Production /Remaining Resources Million Oz	Resource Metric Tonnes (million)/ Grade g/t	Operation Type	Plant Type/ Annual Production 000oz	Ownership	Data Source
Cerro Vanguardia	2.5 Au Vein 3.21 Au / 24.9 Ag Heap Leach 0.52 Au, 44 Ag	Vein 13.62/3.05 Au, 56.4 Ag Heap Leach 24.36/0.67 Au, 56.4 Ag	Open Pit/ Underground	CIL /Heap Leach 2008 :166 Au , 2,300 Ag	AngloGold Ashanti 92.5%/ Formicruz 7.5%	'Mineral Resource and Ore Reserve Report 2008' www.hochschildmining.com
Marta Mine	15 Ag /5.68 Ag, 0.006 Au	0.141/1050 Ag, 1.1 Au	Underground	Flotation Concentrate 2,700 Ag, 3.3 Au	Coeur d'Alene Mines Corporation	Reserves Table Dec 2008 http://www.coeur.com/resources
Manantial Espejo	58.3 Ag/ 0.75 Au	12.4/ 146 Ag, 1.88 Au	Open pit /Underground	4000 Ag, 0.06 Au	Pan American Silver	Reserves Table Dec 2008 http://www.panamericansilver.com
Cerro Negro Project	2.27 Au, 23.7 Ag	Eureka 3.46/12.28 Au, 15.82 Ag Vein Zone 8.9/3.21	Planned Open pit /Underground	Advanced Stage/FeasibilityStudy	Andean Resources	Andean Resources May 2009 http://www.andean.com.au/
San Jose	44.76 Ag 0.69 Au	4.1 / 7.0 Au, 488 Ag	Underground	CIL/Gravity 54.3 Au, 4,400 Ag	Hochschild Mining 51% plc. /Minera Andes 49%	Reserves and Resources Dec 2008 www.mineraandes.com

The Deseado Massif mineralization is associated with hydrothermal systems related to the volcanic-tectonic activity developed during the Mesozoic age (Middle to Late Jurassic).

The profusion of gold and silver mineral exposures that amounts to more than 48 (including prospects, projects and mines) served as a base to Dr. Schalamuk et al. (1999) to propose the denomination of this region as the "Deseado Metallogenic Province". The most important deposit is Cerro Vanguardia with 350 km² and 240 lineal of low sulphidation epithermal quartz veins.

9.2 PROPERTY MINERALIZATION

The most important area of mineralization on the La Manchuria property is located in the area known as the "Main Zone". It is located in the southeast portion of the Jenny property, covering an area 500 m along strike (northwest/southeast) by 200 m wide.

The mineralization is characterized by sub-parallel veins and veinlets of chalcedony to thin saccharoidal quartz. The thickness of the vein outcrops varies between 10 to 30 cm, exceptionally 50 cm, while the veinlets do not exceed 2 cm, with extensions of 20 to 100 m along strike. These veins are the most largely distributed in northwest area.

In the southeast part of the Main Zone (at depth) a major banded quartz vein and banded quartz intercalated with bands of black sulphide veins "ginguro" is present. There is not any outcrop in the surface projection of the vein. The structure is localized in the rhyolite.

Generally speaking the La Manchuria mineralization typically consists of sheeted vein zones, hosted by the upper rhyolitic unit. In most areas, the mineralization becomes more diffuse in dacite and does not continue into the andesite. The contact between rhyolite and dacite is typically a fault zone, consisting of fault breccias with fragments of quartz, argillized rhyolitic and dacitic clasts in a silica matrix with disseminated pyrite.

9.2.1 Description and Distribution

The recognized mineralization in La Manchuria is found both in felsic rocks (rhyolite) and in intermediate rocks (dacite), and is typical of gold/silver low-sulphidation epithermal systems. The veins and veinlets contain chalcedonic, saccharoidal to crystalline quartz, with colloform bands, crustified, undulating bands of silver sulphosalts (ginguro) and hydrothermal breccias. The mineralization is associated with alteration minerals typical of this environment, described below in Section 9.2.2.

Mineralization is controlled by a regional north-northwest trend (315-330°), which dips between 90° and 80° to the northeast.

9.2.2 Hydrothermal Alteration

The characteristics of the alteration/mineralization system at La Manchuria are considered typical of low-sulphidation epithermal precious metal deposits, based on the alteration and vein mineral assemblages (including the ore minerals) and the vein textures. There is, however, no unequivocal evidence of hydrothermal fluid boiling in order to cause the (high grade) precious metal mineralization. The lack of evidence of phase separation in vein quartz hosted fluid inclusions, the absence of lattice texture and the paucity of hydrothermal brecciation effects, suggest other causes were more important in determining precious metal mineralization. These might have included fluid mixing and cooling processes. Conditions of mineralization are speculated to have evolved from initially higher temperature (e.g. 250°-300°C) and near-neutral pH (adularia deposition) to lower temperature (e.g. <200°C) and slightly acidic pH to form later cavity fill clay deposition and pervasive argillic alteration. Although the hydrothermal fluids were possibly moderately oxidising (e.g. deposition of pyrite and Fe-poor sphalerite), they were not as oxidised as fluids involved in the formation of high- and intermediate-sulphidation epithermal systems.

From observations at surface and in core, as well as petrographic descriptions made by P. Ash and E. Dominguez, two alteration types have been recognized: hypogene and supergene.

The hydrothermal alteration intensity varies from weak to intensely pervasive. This pervasive mineral alteration replaces the original minerals and only zircon and/or quartz are observed.

Hypogene

On the surface, the typical zonation of low sulphidation epithermal systems has been observed. The central zone consists of quartz-adularia and pervasive silica-adularia alteration associated with veins and veinlets. The argillic alteration forms a halo surrounding the silicified zone and is in turn surrounded by a propylitic alteration zone.

Silica alteration has been observed at surface as well as in drill core in all parts of the property. In the northern part of the project silica alteration is pervasive and it can be from moderate to strong close to the veins and veinlets. In the south is not evident at surface and in the core it is restricted to the veins and veinlets.

Argillization is dominated by silicification in the northern Main Zone, but increases in intensity towards the southeast where silicification is weak, possibly due to a change in lithology. The mineral adularia is typical of this style of alteration within the mineralized structures. Illite is found in the distal part of the vein and veinlet zones and it is transitional to smectite.

Propylitic alteration has been recognized in andesite outcrops located in the east and south of the Project area. It has also been identified in deeper diamond drill holes by the presence of chlorite-pyrite and rarely by calcite veinlets.

Supergene

Supergene alteration is uniformly distributed in the rhyolite and blocky dacite to a depth of approximately 25 m below surface.

The oxidation zone is represented by hematite and/or limonite, which form by the weathering of pyrite, and occur as fracture filling or halos. Supergene kaolinite is caused by the weathering of illite-smectite in the fracturing areas and presence of CO₂.

9.2.3 Mineralogy and Paragenesis

Based on observations of core in hand specimen, thin and polished section petrographic samples (total of 26 samples) and studies by fluid inclusions, the respective mineralogical characteristics of oxide and sulphide assemblages have been determined and are discussed below.

Fluid inclusions have been observed in the vein filling assemblages, mostly in coarse to medium grained quartz. Generally, fluid inclusions are small (< few microns), but are locally abundant and larger in some of the growth zoning present in coarser prismatic quartz. Here, fluid inclusions up to 25 μ m across are observed (although they could have been larger, but intersected and hence destroyed during section preparation). Almost all fluid inclusions observed are simple 2-phase, liquid (L) + vapour (V) types, with L > V. No fluid inclusions contained definite salt crystals (not that they would be expected in this type of hydrothermal

system) and there was no strong evidence for (a) strongly variable L/V ratios, (b) V-rich inclusions, or (c) CO₂-rich inclusions (e.g. 2 liquid phases + V). In other words, there is little indication of phase separation (e.g. boiling) during vein formation.

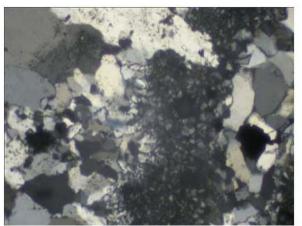
Oxide Mineralogy

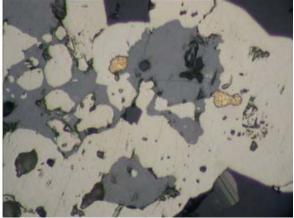
The effects of supergene oxidation are manifest in many samples. Incipient effects are indicated by the variable replacement of the base metal sulphides by small amounts of secondary Cu sulphides, viz. covellite and rare digenite. There is also evidence of the supergene replacement of hypogene electrum by gold of high fineness. More robust supergene effects resulted in the more or less complete destruction of sulphides and the formation of (a) pseudomorphic boxwork structures after pyrite, (b) late veins, and (c) irregular replacement aggregates, of fine grained jarosite, in places accompanied by goethite. Late veins of jarosite and goethite contain traces of very fine grained gold, interpreted as a product of supergene redistribution. These observations indicate that although there are abundant indications of hypogene precious metal associations (Ag-rich sulphides and electrum (-gold), supergene processes might be important in redistributing gold in the oxidized zone and increasing its fineness.

Partial to complete supergene oxidation of high-grade Au-Ag mineralization has occurred to an average depth interval of 70 to 100 m, with the consequent destruction of all sulphide minerals and the development of abundant hematite, jarosite, limonite, and kaolinite.

Within the zone of oxidation, gold occurs in the native state; discrete grains of gold (up to approximately 30 µm across) were observed and interpreted to be of both relict hypogene and supergene occurrence (Figure 9.1). Gold fineness may have been increased due to preferential silver removal during oxidation of hypogene electrum.

The mineralization in the hypogene zone is located in the crustified banded quartz-adularia vein filling. These bands are sub-planar to slightly convoluted and are generally fine to medium grained, with textures ranging from prismatic to inequigranular. Small cavities are present in the slightly coarser bands, with partial fillings by clay minerals (illite, kaolinite). Minor disseminated sulphides occur throughout, with pyrite being the most common, but accompanied by Fe-poor sphalerite, arsenopyrite, chalcopyrite, galena, tetrahedrite, proustite-pyrargyrite and acanthite/argentite. The individual bands in the some samples range from quartz-rich to adularia-rich and there is some "stratigraphy" in sulphide mineral deposition, e.g. discrete bands that host more common chalcopyrite, or sphalerite, or Ag-minerals and arsenopyrite. (Figure 9.3).




Figure 9.1 Cut Slab Showing Crustified Banding in Quartz-rich Vein Material

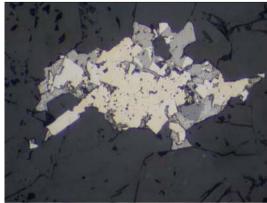
Note: Cut slab shows crustified banding in quartz-rich vein material with coarser grained milky quartz intercalated with fine grained quartz and creamy coloured clay and K-feldspar, in places with small dark grains of sulphides (mainly pyrite)

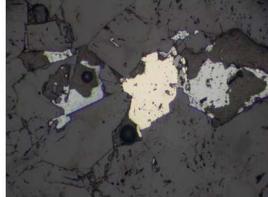
Figure 9.2 Photomicrographs of Vein Mineralization

Note: The left photo shows an irregular band of low-birefringent fine grained K-feldspar (dark grey intercalated with fine to medium grained quartz in vein infill. Black grain on right hand side is pyrite. Transmitted light, crossed polars, field of view 2 mm across. The right photo shows a composite aggregate of pyrite (pale creamy) with Fe-poor sphalerite (grey) and a couple of grains of electrum (pale yellow), with adjacent quartz (dark grey). Plane polarized reflected light, field of view 0.2 mm across.

Figure 9.3 Core Sample Showing Crustified Vein Texture.

Note: Specimen shows crustified banding in vein assemblage, with pale grey quartz-rich bands intercalated with white bands that contain adularia and quartz. A few small cavities are evident along with traces of dark sulphide grains.


In drill core samples, veins are composed of crustified, dominantly quartz-banded vein material with banding generally oriented at a moderate angle to the core axis. Bands are up to 2.5 cm wide and range from mid-grey to pale grey to white, with scattered small cavities and traces of finely disseminated sulphides (including pyrite). White bands have a somewhat chalky appearance and may contain K-feldspar (adularia).


Precious metals within hypogene mineralization occur dominantly in finely disseminated proustite. Pyrite is the dominant sulphide, forming fine to medium grained aggregates up to 1.2 mm across. There are also a little Fe-poor sphalerite grains (up to 0.5 mm across), arsenopyrite (to 0.2 mm), chalcopyrite, galena, tetrahedrite, proustite-pyrargyrite (up to 0.5 mm across) and acanthite/argentite (Figures 9.2 and 9.3). Composite aggregates of sulphides are common, including pyrite \pm arsenopyrite \pm tetrahedrite, galena, sphalerite (Figure 9.2), pyrite-sphalerite-galena, pyrite-chalcopyrite (-sphalerite) and proustite-pyrargyrite \pm acanthite/argentite \pm pyrite. (Figure 9.4).

In several of the petrology samples hosting high grade hypogene mineralization no discrete Au-bearing phases were recognized, suggesting that a proportion of the gold might be held in arsenopyrite \pm pyrite.

Figure 9.4 Composite Aggregate of Sulphides in Adularia and Quartz

Note: The aggregate contains major pyrite (pale creamy), arsenopyrite (white), tetrahedrite (pale olive-grey), galena (pale grey) and sphalerite (mid-grey). Plane polarized reflected light, field of view 0.5 mm across. Vein filling of blocky adularia and quartz with small cavity filling aggregate of proustite-pyrargyrite (pale grey-blue, left), pyrite (pale creamy, centre), acanthite/argentite (pale grey, right) and a trace of sphalerite (mid-grey) on the margin of the pyrite grain. Plane polarized reflected light, field of view 1 mm across.

9.2.4 Controls on Mineralization

From the district mapping, a regional zone of dextral trans-tension with northeast extension has been documented (Figure 9.5). Observations suggest that the veins are formed in dextral structural clusters, inferring an expansion main trending $(\sigma 3)$ and a stress principal $(\sigma 1)$, approximately northeast-southwest and northwest-southeast, respectively.

It has been observed that the veins dominantly strike northwest to north-northwest (az. 315° to 335°) and dip between 75° and 90° to the northeast. The extensional preferential trend is occupied by quartz veinlets which vary in width from millimetres to more than one centimetre while the veins have widths of up to 2.8 m with strike lengths of up to 100 m, on rare occasions.

During detailed mapping, a preferential trend was observed which coincides with the regional stress domain, previously documented in the Deseado Massif. In this case it was on a smaller scale, but field observation has shown that the regional north-northwest/south-southeast cluster can also be confirmed on a deposit scale. A detailed structural study is recommended to confirm these preliminary observations.

The other mineralization control is frequently related to a lithologic regulation between upper rhyolitic package and the lower dacitic unit. A positive correlation has been observed, in the drillholes and on the cross-sections, between rhyolite and vein density and to a lesser extent between gold and silver grades and rhyolite. The majority of the higher grade veins are hosted by rhyolite, however there some isolated veins, with elevated gold and silver grades, in the dacite and the andesite.

Figure 9.5 La Manchuria Structural Pattern (Callan, 2007).

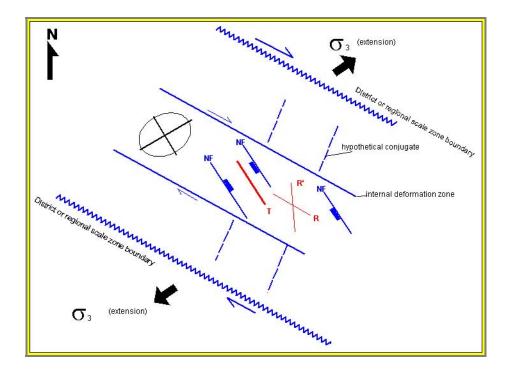


Figure 9.6
Photo of the Movement in the Main Zone

Quartz precipitation implies declining fluid temperatures, which would be expected at progressively shallower levels within and immediately above the Don Pancho fault zone. However, fluids that accessed the immediate footwall of the fault do not appear to have undergone the same degree of cooling; hence, the complete absence of both silicification and quartz veining. A lack of open space during faulting is considered to be the most likely explanation for the absence of the banded quartz typical of low-sulphidation deposits in the footwall of the Don Pancho fault.

Deposition of high-grade mineralization is considered to have overlapped with or immediately followed the main silicification event, potentially in multiple, discrete stages. The ore-bearing fluids were focused along the footwall side of the silicified zone, resulting in intense illite-sericite alteration. Gold deposition is considered more likely to have resulted from admixture of ascending fluids with meteoric water than by boiling, given the absence of boiling indicators such as adularia and carbonate-replacement textures. The deposition of ruby silver, realgar and orpiment concluded the paragenetic sequence.

Following alteration and mineralization, fault displacement may have continued and been localized in the rheologically weakest parts of the fault zone: the intense illite-sericite alteration immediately adjacent to the zones of massive silicification. Since this zone was also the site of high-grade mineralization, much of the potential ore occurs in fault gouge. In the case of low-sulphidation veins, post-mineral faulting tends to be focused along the immediate contacts of the ore-bearing quartz and, hence, does not normally disturb the high-grade mineralization.

10.0 PATAGONIA GOLD EXPLORATION PROGRAM

Upon signing the purchase agreement with Barrick (February 5, 2007) PGSA began exploration activities throughout the La Manchuria claim block. The initial emphasis was to validate Barrick data for La Manchuria prospect areas through the resampling of the main mineralized sections in the diamond core stored in Estancia La Pilarica and of the surface chip samples with relevant gold grades, in preparation for the first stage of drill testing in February 2007.

Geological work completed to date includes:

- Reinterpretation of soil geochemistry results and CSAMT geophysics.
- Establishment of local grid baseline points at origin 5000E, 5000N- to allow projection of trench and drill section data on sections perpendicular to the northwest strike of mineralization.
- Geologic mapping at 1:1,000 scale by Nick Callan and 1:10,000 scale geological property map by Guillermo Hansen.
- Excavation and sampling of five trenches, (152.80 m and 91 channel samples).
- Resampling of 73 core samples for validation and collection of 149 rocks chip samples.
- A three phase drilling program in which 104 drillholes, totalling 17,847.55 m were completed and 7,946 samples were taken. The drilling consisted of:
 - 85 HQ diamond drillholes totalling 13,839.05 m.
 - 19 RC/diamond holes totalling 4,008.5 m of which 1,717 m were reverse circulation pre-collars and 2,291.5 m were HQ diamond drill core.
- Petrographic study of 26 samples in thin and polished sections.
- Visits from international-recognized geological consultant Richard Sillitoe (2008).
- Survey topography with a differential GPS and develop a contour map.
- Survey of all drillhole and trench locations in x, y, and z dimensions with a differential GPS.

10.1 GRIDDING, TOPOGRAPHY AND SURVEYING

Local baseline grid points were surveyed with the origin defined at 5000E, 5000N. This grid is tied into the Gauss Kruger Projection and Campo Inchauspe Faja 2 datum coordinate

system with surveying using a double frequency (L1 and L2), TOPCON Model GB-1000 differential GPS which generally gives precision of X=1 centimetre, y=1 centimetre and Z (altitude) =1.5 centimetre.

The same equipment was employed to survey trench and drillhole collar locations in addition to providing both topographic control and contours. Topographic control was facilitated with the collection of coordinate and altitude data on a 5 by 5 metre grid spacing over a 132-hectare area from which the data points were subsequently contoured using triangulation parameters.

10.2 TRENCHING

Trenches were dug with the purpose of discovering mineralized areas covered by less than 2 m of overburden. The location of these trenches was established by the project geologist using GPS equipment.

Once the trenches were excavated with a backhoe, they were manually cleaned with shovel and brush. Topsoil removed by the backhoe excavator was stockpiled separately for later backfilling. The trenches were mapped by a geologist, who identified the sections to be sampled. The sampling methodology is described in Section 11. The locations of trench samples were marked with permanent metal tags and surveyed using a differential GPS.

Table 10.1 Trenches Made by PGSA

Trench	X	Y	Z	Length
TR-01	2432939.39	4666241.83	728.13	22.2
TR-02	2432882.16	4666226.60	717.05	21.8
TR-03	2432700.91	4666175.23	712.24	19.5
TR-04	2432636.89	4666262.37	702.65	39.5
TR-05	2432569.06	4666206.3	700.02	49.8

10.3 PETROGRAPHY

A suite of 17 samples were selected from HQ drill core and shipped to a petrology consultant Paul Ashley in Australia for preparation and petrographic analysis. A summary description of each sample is listed below.

• 160105 PTS Summary: Banded hydrothermal vein infill, with intercalation of dominant coarse grained prismatic quartz bands and fine grained bands of quartz, with minor K-feldspar (adularia) and a little illite-sericite and sulphides. Coarse quartz bands commonly host fluid inclusions outlining growth zoning in quartz. In the finer grained bands, irregular to elongate masses of granular K-feldspar are intergrown with fine to medium grained quartz, a little illite-sericite and disseminated pyrite. Associated with pyrite, but also occurring as tiny discrete grains are Fe-poor

- sphalerite, chalcopyrite, galena, arsenopyrite, argentite/acanthite and electrum. There has been local replacement of chalcopyrite and argentite/acanthite by covellite.
- 160106 PTS Summary: Coarse lithic-crystal tuff, with very strong argillic alteration. Fragments and matrix are of similar composition and display relict phenocrystal grains of quartz, along with altered biotite, feldspar and possible clinopyroxene phenocrysts. The groundmass of fragments and the tuffaceous matrix are fine grained. There has been replacement by fine grained low-birefringent clay (e.g. kaolinite), along with subordinate quartz and illite/sericite (the latter mostly at altered biotite sites). Disseminated pyrite is common, and forms aggregates at former clinopyroxene sites. A couple of thin quartz veins cut the altered rock.
- 160237 PTS Summary: Banded hydrothermal vein infill, displaying intercalated fine to medium grained quartz, very fine grained quartz, coarse grained prismatic quartz and adularia, each forming distinct bands on a millimetre to centimetre scale. In coarse grained quartz, growth banding is defined by trails of fluid inclusions. In finer grained quartz bands, there are minor amounts of disseminated sulphide minerals, locally forming composite aggregates. Acanthite is the main sulphide phase, locally in composites with proustite-pyrargyrite and with tiny traces of pyrite and arsenopyrite. Slight supergene oxidation effects have led to local goethite staining and local aggregates of goethite and jarosite.
- 160334 PTS Summary: Hydrothermally brecciated and very strongly altered porphyritic andesite, with subsequently emplaced veins. The original rock contained scattered phenocrysts of feldspar and ferromagnesian material in a fine grained, perhaps glassy fluidal groundmass. It underwent potassic alteration and replacement by adularia, quartz and clay, with a little disseminated pyrite and rutile. Brecciation caused the development of a matrix-supported texture and infill by very fine grained quartz, with minor adularia, clay and pyrite. Veins cutting the breccia are sub-planar, with the wide examples showing crustified banding. Quartz of differing grain size and texture is intercalated with adularia in the veins, with a little disseminated sulphides and paragenetically late infill of Fe-bearing carbonate. Sulphides occur mainly in coarser grained quartz and adularia and include Fe-poor sphalerite and pyrite, with traces of chalcopyrite and galena. Many small grains of gold are associated with sulphides, commonly forming composites.
- 160444 PTS Summary: Coarse grained rhyolitic fragmental rock, with strong hydrothermal alteration. It is likely that at least some alteration occurred prior to fragmentation as several fragments contain quartz veins that do not extend across the matrix. The fragments were porphyritic, with relict quartz and altered feldspar phenocrysts, in a fine grained vitriclastic groundmass. There has been initial alteration to K-feldspar (adularia) and fine grained quartz, with traces of rutile and pyrite. With fragmentation, minor fine grained clay developed in the matrix, along with finely dispersed hematite and a few patches of fine to medium grained quartz. Supergene oxidation effects have led to most original pyrite being destroyed and the

formation of a little goethite and jarosite. No particulate gold has been observed in the sample.

- 161427 PTS Summary: Banded quartz-rich vein abutting against a brecciated host rock that is composed of porphyritic felsic volcanic, with alteration to quartz, adularia and illite-sericite. The vein contains textural and compositional crustified growth bands, dominated by coarsely prismatic quartz, but with local finer grained bands (containing traces of argentite/acanthite, pyrite, chalcopyrite and proustite-pyrargyrite) and bands contain a little adularia. Supergene oxidation has caused extensive impregnation of the altered host rock by jarosite and the emplacement of several jarosite veins cutting the quartz vein infill.
- 161519 PTS Summary: Strongly hydrothermally altered, porphyritic dacitic volcanic rock, with extensive veining. The rock contained scattered small feldspar phenocrysts and microphenocrysts of a ferromagnesian phase and rare quartz in a fine grained groundmass. The rock has been replaced by fine grained clay (illite and kaolinite), K-feldspar (adularia) and quartz, and disseminated pyrite. Thin veins in the altered rock contain quartz and adularia, but wider veins are quartz-dominant. In the wider veins, there is textural banding, defined by differences in quartz grain size and crystallinity. Small amounts of fine grained disseminated pyrite, and traces of chalcopyrite, Fepoor sphalerite and galena occur in the veins, mainly associated with fine grained quartz.
- 162182 PTS Summary: Porphyritic and locally fragmental volcanic rock, possibly of dacitic composition, with strong pervasive potassic (-argillic) alteration and a major crustified banded quartz vein. The volcanic rock contained scattered feldspar and uncommon quartz phenocrysts in a fine grained groundmass. There was replacement of the rock largely by fine to medium grained K-feldspar (adularia), but with minor clay (kaolinite and illite), pyrite and trace rutile. The vein assemblage contains alternating medium to coarse prismatic quartz and fine to medium grained inequigranular quartz. There is a little interstitial illite-sericite and only a tiny trace of pyrite.
- 162184 PTS Summary: Crustified banded vein filling sample, with rather contorted bands that include coarse grained prismatic quartz, medium to coarse grained inequigranular to prismatic quartz, medium grained adularia and quartz, and finely inequigranular quartz. A trace of illite occurs interstitially in quartz and adularia and in some of the medium to coarse grained quartz there are scattered voids. Small amounts of sulphide minerals are present as void fillings and disseminated in finer grained quartz. The sulphides include fine to medium grained pyrite, acanthite and proustite-pyrargyrite, with a tiny trace of chalcopyrite in acanthite. Slight supergene oxidation has caused local development of trace covellite, mainly by replacement of acanthite and chalcopyrite.
- **162524 PTS Summary:** Vein-filling assemblage of dominant, randomly oriented, medium to coarse grained prismatic to inequigranular quartz. In places, there are

interstitial patches of fine grained clay (e.g. kaolinite), hosting small amounts of proustite-pyrargyrite and traces of acanthite, pyrite, Fe-poor sphalerite and chalcopyrite. Elsewhere, the medium to coarse grained quartz only hosts traces of proustite-pyrargyrite and sphalerite, along with a few small grains of adularia.

- **162525 PTS Summary:** Strongly altered, diffusely layered vitric-dominated tuff or possible epiclastic of felsic volcanic composition. Layering is defined by differences in particulate grainsize, with some layers displaying grading. Most clastic material in the original rock was vitric, but there are small populations of altered feldspar and relict quartz grains. The rock has been strongly replaced by fine grained illite-sericite and K-feldspar (adularia), with minor pyrite, quartz and trace rutile. A few aggregates of pyrite and adularia occur and the rock has been cut by several, generally thin veins and irregular patches, including adularia-dominant, illite-sericite ± quartz, adularia + pyrite and quartz-rich.
- 162903 PTS Summary: Porphyritic biotite rhyolite with strong alteration to a transitional potassic-argillic assemblage, and hosting a complex vein showing initial infill dominated by fine to medium grained inequigranular adularia, and later crosscutting masses of adularia and quartz. A little disseminated pyrite was present in the altered volcanic rock and in the vein component. Supergene oxidation led to destruction of almost all pyrite and development of pseudomorphic aggregates, veins and irregular masses of fine grained jarosite. There are also several thin later veins of jarosite, clay and goethite that host a few tiny grains of gold.
- 162928 PTS Summary: Porphyritic biotite rhyolite with strong alteration to a transitional potassic-argillic assemblage, with a few sub-planar veins of adularia and quartz. The original rock contained phenocrysts of quartz, feldspar, biotite and another possible ferromagnesian phase in a fine grained quartzofeldspathic groundmass. There was replacement by adularia, illite/sericite, clay (kaolinite) and minor quartz and pyrite. Traces of covellite, digenite and sphalerite are also present, with the Cu sulphides being of probable supergene oxidation origin.
- 162929 PTS Summary: Mineralized, quartz-rich vein filling, with irregular to banded domains of finely inequigranular quartz intercalated with medium to coarse grained prismatic quartz. Small amounts of finely disseminated acanthite/argentite, pyrite, sphalerite, electrum and proustite-pyrargyrite occur mostly in finer grained quartz. Small amounts of clay (illite) occur in cavities in coarser quartz. The rock was subsequently brecciated, with development of a clast-supported texture and a small amount of infill of fine grained quartz and clay. Later supergene oxidation led to local dissolution of sulphides, formation of fine grained jarosite and little goethite as cavity and fracture fill, and the occurrence of tiny grained of high-fineness gold developed from electrum.
- **163183 PTS Summary:** Mineralized, quartz-rich vein filling, with a range in quartz textures from coarsely prismatic (amethystine) to medium grained sub-radiating to inequigranular, to finely inequigranular. Small cavities occur locally and in the finer

grained quartz are variably filled by fine grained clay (illite) and small amounts of sulphides. The most common sulphide phase is chalcopyrite and there are traces of associated pyrite, sphalerite, galena, tetrahedrite and proustite-pyrargyrite. Sulphides are commonly found in small composite aggregates.

- 163623 PTS Summary: Mineralized, crustified banded, quartz-adularia vein filling. Bands are sub-planar to slightly convoluted and are generally fine grained through to medium grained, with textures ranging from prismatic to inequigranular. Small cavities are present in the slightly coarser bands, with partial fillings by clay minerals (illite, kaolinite). Minor disseminated sulphides occur throughout, with pyrite being the most common, but accompanied by Fe-poor sphalerite, arsenopyrite, chalcopyrite, galena, tetrahedrite, proustite-pyrargyrite and acanthite/argentite. Individual bands in the sample range from quartz-rich to adularia-rich and there is some "stratigraphy" in sulphide mineral deposition, e.g. discrete bands that host more common chalcopyrite, or sphalerite, or Ag-minerals and arsenopyrite.
- 163625 PTS Summary: Crustified banded, quartz-rich vein, with textures ranging from coarsely prismatic to medium grained prismatic and inequigranular (in places with minor adularia) and to finely granular. Cavity zones occur in the some of the medium grained quartz and there is locally substantial clay infill. Disseminated sulphides and associated traces of electrum are found largely in the fine grained and medium grained types of quartz. Pyrite and chalcopyrite are locally concentrated into thin bands and accompanied by a little tetrahedrite, sphalerite, galena and rare proustite-pyrargyrite. Electrum grains are up to 50 µm across and occur discretely as well as forming composites, typically with chalcopyrite and tetrahedrite.

In addition, nine core samples were sent to Eduardo Dominguez of Universidad Nacional del Sur, Bahía Blanca. The report is in progress.

10.4 INTERPRETATION OF THE EXPLORATION INFORMATION

Sawn channel samples from PGSA trenching adjacent to historic Barrick cuts confirmed the presence of wide zones of stockwork, veinlets and quartz veins, banded and oxidised. These veins and veinlets are located within northwest and west-northwest trending fracture zones and fault zones containing limonite-hematite and silica alteration.

The high grade results from three phases of drilling show a potential for gold and silver mineralization. Subsequent geochemical and petrographic studies lent important support to these preliminary results, setting the stage for the follow-up exploration work and drilling programs.

Exploration activities, including trenching, sampling, and logging were carried out by PGSA personnel under supervision of a qualified project geologist. The petrography analysis was undertaken by Dr. Paul Ashley of Australia and Dr. Eduardo Dominguez (U.N.S) both experienced petrographers.

The reinterpretation of the CSAMT geophysical data suggested that the mineralized/silicified zone of the Main Zone should continue for about 200 m to the SSE, with an apparent plunge in that direction. This hypothesis was partially confirmed by the last holes drilled on section N5075 (including LM-032-DR, which intersected 5.65 m averaging 1.15 g/t Au and 765 g/t Ag).

The reinterpretation of the soil sampling results showed overlapping Au, Ag, Sb and As anomalies in the Eastern Zone (with an apparent NNW orientation) and about 300 m east of the Eastern Zone. These anomalies are similar to the ones found over the Main Zone and will be the targets of detailed exploration next season.

10.5 EXPLORATION POTENTIAL

Analysis of geophysical data (CSMAT) and soil geochemical data, particularly the As and Hg soil anomalies, indicates the possibility of mineralization continuing southeast of the Main Zone. This could explain the mineralized structure intersected in drillhole LM-093A-D on Section N5100.

The evaluation of geological information from cross-sections and level plans, in conjunction with soil sampling from Abacus, has generated new hypotheses for future exploration. Further processing and interpretation of geological information from drilling has been used to build a longitudinal section. It shows the possibility of rhyolite-hosted mineralization continuing northwest of Section N5475 (Figure 10.1) and southeast of Section N5100 (Figure 10.2) as described above.

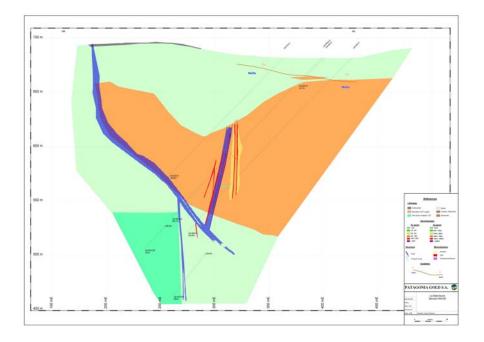
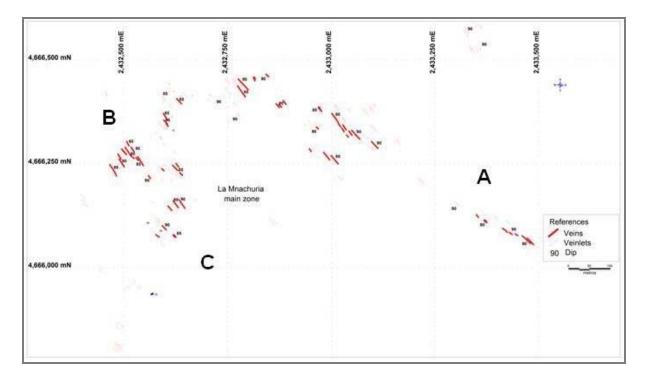



Figure 10.1 Cross-Section N5475

Figure 10.2 Cross-Section N5100


The Abacus soil sample data shows coincident Au, Ag, As and Sb anomalies over the Main Zone and also outside the Main Zone. It is recommended that areas outside the Main Zone with coincident Au, Ag, As and Sb anomalies be explored in more detail.

Other prospective areas are indicated on Figure 10.3:

- A: The Eastern sector is parallel to the southeast extension of the Main Zone, on a topographic high with quartz veins in outcrop.
- B: The northwest extension of the Main Zone.
- C: The southeast extension of Main Zone.
- The "La Pampa" area, a flat area, without outcrop, about 300 m north of the Main Zone.

Figure 10.3
Areas with Exploration Potential Adjacent at La Manchuria

11.0 DRILLING

11.1 INTRODUCTION

Drilling at La Manchuria was carried out in three separate campaigns by Patagonia Drill S.A. and Major Drilling S.A.:

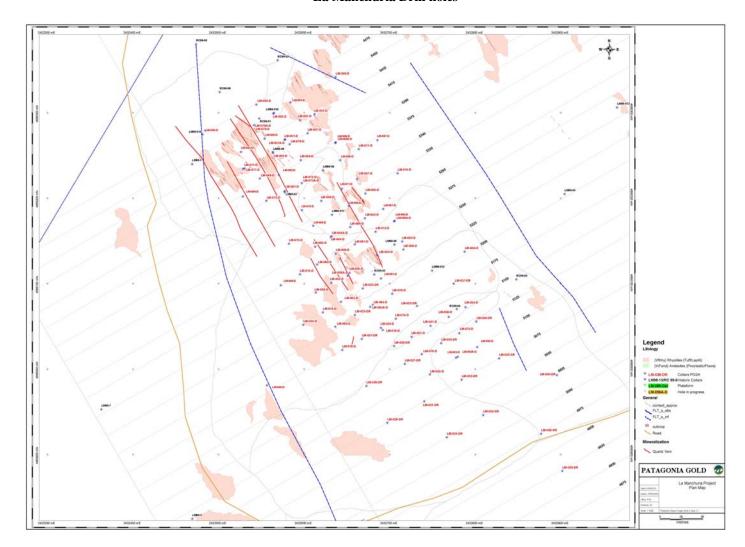
- The Phase 1 drill program was carried out from January to April, 2008 and consisted of 20 diamond drillholes totalling 3,974.45 m. It was carried out by Patagonia Drill S. A. using a UDR 650 rig.
- The Phase 2 program was performed between September and December, 2008. Twenty holes, totalling 4,118.5 m, were drilled with RC precollars to the water table or the interpreted vein depth (whichever came first) and DDH tails to the end of the hole. The program was carried out by Patagonia Drill S.A. using track mounted Universal UDR 650 rigs.
- The Phase 3 program was drilled by Major Drilling S.A. from September 2009 to February 2010 using UDR 650 and UDR 200 drills. It consisted of 64 diamond drillholes totalling 9,754.6 m.

Table 11.1 PGSA - La Manchuria Drill Summary

Phase	Period	Holes	RC	DD	Total
1	Jan-Apr/08	20	0.00	3,974.45	3,974.45
2	Sept-Dec/08	20	1,717.00	2,401.50	4,118.50
3	Sept/08 - Feb/10	64	0.00	9,754.60	9,754.60
Total		104	1,717.00	16,130.55	17,847.55

The following naming conventions were used for the drillholes on the La Manchuria Project:

• Project: Prefix LM (La Manchuria).


• Hole Number: 3-digit number.

• Hole Type: R, D or DR.

Suffixes of R (RC) or D (DDH) were added to indicate the type of drill used to drill the hole. Where a diamond drillhole was pre-collared with RC the suffix DR was added. For example: LM-030-DR.

If a drillhole deviated significantly or was abandoned for any other reason, it was re-drilled. The new hole was given the same number as the original and an "A" was added. For example: LM-044-D was re-drilled as LM-044A-D.

Figure 11.1 La Manchuria Drill holes

11.2 DIAMOND DRILLING METHODS

Drillholes were laid-out using a hand-held GPS, as well as triangulation from adjacent previously drilled and surveyed collars. The orientation of the drillhole was confirmed by a PGSA geologist, before drilling commenced, using a Brunton compass.

Diamond drilling was carried out on two, 12-hour shifts with a PGSA technician on site at all times to record drilling activities in a Drill Log sheet (e.g. drilling, reaming time, additives, core recovery, down hole survey information) and to supervise the extraction of the core from the diamond core barrel and placement into the core box. Continuous radio contact was maintained between the PGSA technician at the drill and the PGSA geologists at base camp.

All diamond drillholes were drilled HQ and utilized a 3-metre core barrel where ground conditions permitted. Reducing to NQ was only required in one hole. In all Phase 3 holes, a triple tube core barrel (HQ3) was installed prior to entering the zone of interest in order to maximize core recovery.

Fresh drilling water was sourced from a series of springs within 10 km of the project area. No orientated core surveys were carried out due to the generally fractured state of the rock.

Daily site visits were made by the PGSA geologist/project geologist to review drilling progress, drill planning and quality control.

During Phases 1 and 2 of the program, down-hole survey measurements were generally taken every 50 m by the drill contractor. Patagonia Drill utilized an Eastman single-shot camera and Major Drilling used a FLEXIT digital, multi-shot, down-hole survey instrument. Depending on the presence and depth of casing in each hole, collar survey photos were generally taken within 10 m of the collar. Each photo or series of drillhole orientation surveys was reviewed by the drill contractor and the PGSA field technician, and recorded in both the drill contractors log and on the PGSA Drill Log sheet by the PGSA field technician.

Since the Phase 3 program consisted of deeper infill holes, each hole was surveyed at 25 m intervals from the collar to a depth of 100 m after which the survey intervals were increased to 50 m intervals to the end of each hole. Holes that deviated more than 2 degrees in the first 50 m (in either azimuth or dip) were redrilled. Nine holes were redrilled for this reason.

Following the completion of each hole, the collar is clearly marked with a capped PVC pipe cemented into a square concrete base. The collar location is surveyed by a qualified surveyor using a differential GPS.

In order to prevent contaminating the local water supply, all drilling water used and or generated during drilling was contained in sumps adjacent to the drill site. After the drilling is complete, PGSA staff inspect each drill site to ensure that it has been cleaned and reclaimed.

11.3 DRILL CORE LOGGING

Core logging was carried out at Estancia La Pilarica, which is situated approximately 10 km from the La Manchuria Project area. Based on detailed geological mapping completed prior to the drill campaigns, a set of lithology, alteration, and mineralization codes were established and the logging methodology defined in order to standardize nomenclature among the geologists involved in the project. Geological information recorded during logging included:

- Lithology: rock type, grain size and composition.
- Alteration: mineral identification, especially type and intensity of clay alteration and silicification
- Structure: measurement of structural elements relative to the core axis.
- Mineralization type: breccia types, vein composition and widths, sulphide species and concentrations.
- Oxidation: degree of oxidation of rock by weathering including oxidized, partially oxidized (transitional) and un-oxidized.

High resolution digital photographs of each core box were taken by PGSA technicians and are stored as a virtual core library in the PGSA drilling database. The logging process as conducted by the geologist involved the definition, marking and numbering of sample intervals on the core and core boxes; sample intervals were based on the above geological criteria in preference to metre-by-metre sampling. As a broad guide, minimum and maximum sample intervals of 0.5 and 1.5 m were utilized. Exceptions to this rule were applied in zones of very low recovery where, in rare cases, several consecutive down hole intervals were composited in order to produce a sufficiently large sample for analysis.

All the graphical and coded logs were recorded on paper log sheets at a scale between 1:100 and 1:200, depending upon the intervals of interest. The logs also contained a record of the sample intervals and sample numbers defined by the geologist. This information was entered into an Access database by PGSA technicians and validated by both the technician and the geologist. All geological information was transferred daily to cross-sections in order to allow ongoing interpretation of the lithology and mineralization and for the generation of daily summaries for PGSA management.

11.4 REVERSE CIRCULATION DRILLING METHODS

Reverse circulation (RC) drilling was conducted on a 12 hour per day basis. The entire drilling and sampling process was supervised by a PGSA geologist. RC was used in Phase 2 of the La Manchuria Project to pre-collar diamond drillholes and stopped before the hole entered the projected zone of mineralization.

During RC drilling, a 5 1/4-inch face return bit was utilized. A PVC pipe and sealed dust T box was installed at the collar to channel dust away from the drillhole and to prevent caving around the mouth of the hole. Individual one metre intervals were clearly marked on the drill mast and acted as a guide for the driller in sample collection. After each six metre rod was added, the hole was routinely conditioned and cleaned prior to the placement of the bulk sample bag beneath the cyclone for the sampling of the next drill interval.

The logging of sieved and washed drill cuttings from each interval was performed on-site during the drilling of each hole. The cuttings from each one metre sample were saved in clearly marked chip trays.

11.5 RESULTS OF DRILLING

11.5.1 Phase 1 Drilling Campaign: January – April 2008

The first phase of drilling was designed to test the strongest zones of mineralization defined by Abacus and Barrick. During this period twin holes were drilled to verify the mineralized zones and test the results of holes drilled by Barrick. The twin holes were successful in confirming the earlier results.

The Phase 1 program consisted of:

- 20 drillholes (LM-001-D to LM-020-D) were completed, totalling 3.974.45 m.
- Three twin holes were drilled to confirm gold and silver grades, mineralization, lithology and alteration.
- Infill drillholes to determine the orientation and depth of the mineralized structures.

The drillholes tested a 275 m strike length of mineralization along section lines spaced approximately 50 m apart.

The drilling succeeded in expanding the Main Zone of mineralization and identified additional veins. The collar information for the Phase 1 drillholes is summarized in Table 11.2.

Table 11.2 Phase 1 Drillhole Summary - La Manchuria Project

Hole_ID	Section	Easting	Northing	Elevation	Depth	Azimuth	Dip
LM-001-D	N 5350	2432577.14	4666208.37	704.91	150.00	240	-45
LM-002-D	N 5450	2432564.00	4666299.24	682.67	200.55	240	-45
LM-003-D	N 5400	2432563.59	4666253.04	696.89	149.75	240	-45
LM-004-D	N 5200	2432787.71	4666137.44	703.44	167.75	240	-45
LM-005-D	N 5300	2432671.65	4666205.57	711.69	230.65	240	-45
LM-006-D	N 5225	2432716.09	4666140.09	712.92	254.75	240	-45

Hole_ID	Section	Easting	Northing	Elevation	Depth	Azimuth	Dip
LM-007-D	N 5400	2432604.08	4666276.21	696.71	200.75	240	-45
LM-008-D	N 5275	2432637.02	4666135.37	714.91	167.30	240	-45
LM-009-D	N 5450	2432636.84	4666341.95	684.66	292.00	240	-45
LM-010-D	N 5275	2432709.26	4666229.29	703.39	302.75	240	-45
LM-011-D	N 5350	2432663.82	4666257.53	701.91	277.45	240	-45
LM-012-D	N5250	2432683.61	4666160.87	715.07	260.75	240	-45
LM-013-D	N5300	2432582.26	4666146.76	702.43	149.40	240	-45
LM-014-D	N5250	2432595.11	4666111.06	708.12	188.55	240	-45
LM-015-D	N 5225	2432621.81	4666066.51	716.85	182.60	240	-45
LM-016-D	N5200	2432703.03	4666088.31	712.42	239.55	240	-45
LM-017-D	N5400	2432528.54	4666234.54	695.31	137.15	240	-45
LM-018-D	N5200	2432644.58	4666022.46	712.14	161.75	240	-45
LM-019-D	N5175	2432691.97	4666045.96	706.71	63.35	240	-45
LM-020-D	N5175	2432689.75	4666048.50	707.01	197.65	240	-45

The significant drill intersections from Phase 1 are summarized in Table 11.3. Intersections averaging at least 5 g/t Au or 70 g/t Ag and containing less than 5 m of lesser grade mineralization are considered significant, for the purposes of this summary.

Table 11.3 Phase 1 - Significant Intercepts

Hole ID	From	To	Interval	Au g/t	Ag g/t
LM-001-D	52.50	53.30	0.80	32.42	61.5
LM-001-D	60.60	66.10	5.50	1.10	33.2
including	62.70	63.65	0.95	4.84	43.5
LM-001-D	75.00	86.25	11.25	1.44	30.5
including	86.25	87.00	0.75	13.60	290.0
LM-001-D	114.00	125.20	11.20	1.20	49.8
including	120.95	123.05	2.10	4.04	9.0
including	125.50	125.90	0.40	4.19	666.0
LM-002-D	43.30	43.85	0.55	8.08	9.5
LM-002-D	52.55	55.00	2.45	4.14	2,831.0
including	52.55	54.06	1.51	6.38	4,520.5
LM-002-D	137.00	141.00	4.00	2.38	1.8
including	138.00	139.00	1.00	6.78	4.0
LM-003-D	1.00	4.20	3.20	2.01	289.8
LM-003-D	44.30	52.20	7.90	2.47	17.2
including	47.80	48.95	1.15	10.10	16.4
LM-003-D	63.50	64.50	1.00	8.79	76.6
LM-003-D	100.10	101.30	1.20	3.70	134.0
LM-004-D	13.80	14.45	0.65	5.26	406.0
LM-004-D	38.00	42.00	4.00	1.53	46.6
LM-005-D	22.00	22.65	0.65	3.17	1,445.0
LM-005-D	47.50	48.50	1.00	3.95	8.0
LM-005-D	82.45	84.95	2.50	3.30	36.9
including	82.45	83.45	1.00	6.53	46.4
LM-005-D	159.20	160.00	0.80	4.76	28.6
LM-006-D	13.00	14.00	1.00	1.22	101.0
LM-006-D	158.25	160.55	2.30	3.09	27.0
LM-007-D	63.50	66.60	3.10	2.32	344.4
including	63.50	64.10	0.60	7.94	801.0
LM-007-D	76.50	77.20	0.70	2.25	8.4
LM-007-D	87.80	92.10	4.30	0.99	250.3
including	87.80	88.30	0.50	2.76	1,060.0

49

Hole ID	From	To	Interval	Au g/t	Ag g/t
LM-008-D	62.30	65.40	3.10	5.86	37.1
including	62.30	63.80	1.50	10.90	21.1
LM-008-D	77.20	84.30	7.10	1.81	281.3
including	82.00	82.50	0.50	20.10	2,980.0
LM-008-D	90.00	94.25	4.25	2.54	96.5
including	90.00	90.50	0.50	20.20	509.0
LM-008-D	105.90	107.30	1.40	6.05	498.6
including	105.90	106.60	0.70	11.55	963.0
LM-008-D	160.00	165.85	5.85	1.43	2.5
including	165.25	165.85	0.60	11.65	5.3
LM-009-D	145.70	146.50	0.80	5.30	8.3
LM-010-D	0.00	1.00	1.00	5.22	9.0
LM-010-D	35.50	40.50	5.00	1.16	23.7
LM-010-D	109.00	117.50	8.50	0.88	24.7
LM-010-D	131.00	136.00	5.00	0.87	32.5
LM-010-D	262.70	268.00	5.30	6.10	10.2
including	262.70	263.40	0.70	14.25	64.1
including	266.50	268.00	1.50	14.85	3.9
LM-011-D	68.00	72.10	4.10	2.97	21.1
including	71.30	72.10	0.80	13.80	38.7
LM-011-D	94.45	95.00	0.55	12.35	2,220.0
LM-011-D	165.00	173.00	8.00	0.64	139.9
including	172.50	173.00	0.50	5.82	1,980.0
LM-012-D	101.30	102.30	1.00	2.34	29.7
LM-012-D	134.50	145.50	11.00	0.90	55.2
including	135.15	135.65	0.50	13.85	26.2
LM-012-D	170.00	174.50	4.50	2.96	70.7
including	171.50	173.00	1.50	7.74	81.7
LM-012-D	192.60	193.15	0.55	7.79	4,920.0
LM-012-D	237.50	238.15	0.65	7.02	140.0
LM-013-D	80.00	90.20	10.20	0.68	27.6
LM-013-D	98.00	114.00	16.00	0.64	4.8
LM-014-D	81.00	91.30	10.30	1.43	47.9
including	84.20	85.25	1.05	5.76	356.0
LM-014-D	103.80	105.00	1.20	10.30	735.0
LM-015-D	60.70	61.70	1.00	20.10	23.3
LM-015-D	95.25	96.45	1.20	58.90	4,150.0
LM-016-D	187.85	188.70	0.85	11.80	33.2
LM-017-D	68.00	69.00	1.00	14.50	18.6
LM-020-D	119.50	122.35	2.85	22.35	400.9
including	119.50	121.05	1.55	27.53	612.4
including	121.65	122.35	0.70	31.40	246.0

11.5.2 Phase 2 Drilling Campaign: September to December 2008

The Phase 2 drilling campaign was carried out from September to December, 2008 and consisted of 20 holes totalling 4,118 m. It was designed to:

- 1. Further delineate the known mineralization with 50 m spaced drillholes on 25 m spaced sections.
- 2. Define the down plunge extension of the vein-veinlets package to a depth of approximately 150 m below surface. (i.e. 550RL). A series of 3 step back line holes on each section were drilled for this purpose.

- 3. Test the continuity of mineralization intersected in hole LM-020-D (V20).
- 4. Expand the area of known mineralization.

Four fill-in holes were drilled on sections N5175 to N5225 to further test mineralized zones intercepted in holes LM-015-D, LM-016-D and LM-020-D and to determine the mineralization controls, rock type and their relationship.

Initially holes drilled on the step-back lines were generally drilled with RC pre-collars to the approximate depth of the water table or before the interpolated depth of possible mineralization, after which the universal drill rig was converted to allow subsequent diamond drilling. The collar information for the Phase 2 drillholes is summarized in Table 11.4.

Table 11.4
Phase 2 Drillhole Summary - La Manchuria Project

Hole_ID	Section	Easting	Northing	Elevation	RC	DD	Depth	Azimuth	Dip
LM-021-DR	N5175	2432667.47	4666035.41	709.23	70.0	68.0	138.0	240	-45
LM-022-DR	N5175	2432731.92	4666074.15	704.70	150.0	69.0	219.0	240	-45
LM-023-DR	N5200	2432659.38	4666063.49	716.00	90.0	57.0	147.0	240	-45
LM-024-D	N5225	2432598.95	4666052.02	712.43	0.0	110.0	110.0	240	-45
LM-025-DR	N5225	2432668.68	4666094.70	717.87	50.0	138.5	188.5	240	-45
LM-026-DR	N5150	2432705.23	4666027.02	698.45	60.0	99.0	159.0	240	-45
LM-027-DR	N5125	2432717.72	4666006.06	688.79	85.0	89.0	174.0	240	-45
LM-028-DR	N5125	2432672.80	4665980.35	694.94	50.0	73.0	123.0	240	-45
LM-029-DR	N5075	2432697.22	4665937.14	687.36	40.0	131.0	171.0	240	-45
LM-030-DR	N5125	2432760.29	4666030.50	687.85	73.0	146.0	219.0	240	-45
LM-031-DR	N5075	2432740.43	4665962.32	680.10	40.0	183.0	223.0	240	-45
LM-032-DR	N5075	2432784.13	4665987.62	677.42	100.0	133.0	233.0	240	-45
LM-033-DR	N5025	2432766.79	4665920.35	674.63	40.0	102.0	142.0	240	-45
LM-034-DR	N5025	2432809.28	4665946.32	672.34	80.0	122.0	202.0	240	-45
LM-035-DR	N5075	2432827.93	4666012.74	679.78	119.0	164.0	283.0	240	-45
LM-036-DR	N4975	2432877.03	4665924.37	668.00	100.0	162.0	262.0	240	-45
LM-037-DR	N5175	2432774.75	4666100.32	702.79	150.0	138.0	288.0	240	-45
LM-038-DR	N5125	2432801.30	4666055.79	691.07	150.0	129.0	279.0	240	-45
LM-039-DR	N5075	2432901.82	4665880.75	665.00	120.0	153.0	273.0	240	-45
LM-040-DR	N5025	2432895.54	4665992.97	680.00	150.0	135.0	285.0	240	-45
TOTAL				·	1,717.0	2,401.5	4,118.5		

The significant drill intersections from Phase 2 are summarized in Table 11.5. Intersections averaging at least 5 g/t Au or 70 g/t Ag and containing less than 5 m of lesser grade mineralization are considered significant, for the purposes of this summary.

Table 11.5
Phase 2 - Significant Intercepts

Hole ID	From	To	Interval	Au g/t	Ag g/t
LM-022-DR	120.00	125.00	5.00	2.11	352.2
including	120.00	123.00	3.00	2.84	492.3
LM-022-DR	154.35	154.85	0.50	16.50	315.0
LM-022-DR	184.65	187.00	2.35	28.82	343.9
including	184.65	185.35	0.70	52.60	581.0
LM-022-DR	196.00	196.60	0.60	13.65	86.0
LM-023-DR	114.35	116.50	2.15	4.78	143.1
including	114.90	115.60	0.70	10.60	106.0
LM-023-DR	121.00	125.00	4.00	13.31	145.2
including	122.80	125.00	2.20	23.78	264.0
LM-023-DR	132.50	135.35	2.85	8.33	89.0
including	133.55	134.35	0.80	23.70	190.0
LM-025-DR	162.85	164.35	1.50	1.71	6.1
LM-030-DR	115.20	116.05	0.85	3.06	818.0
LM-030-DR	127.30	127.85	0.55	24.70	3,660.0
LM-030-DR	142.50	145.50	3.00	34.77	4,164.2
including	143.50	145.50	2.00	51.37	6,142.3
LM-030-DR	149.50	151.00	1.50	8.59	922.0
LM-030-DR	181.50	182.00	0.50	8.88	32.0
LM-031-DR	138.00	138.50	0.50	1.64	1,035.0
LM-032-DR	115.00	116.15	1.15	5.65	765.0
LM-037-DR	155.10	156.60	1.50	15.10	28.7
LM-037-DR	248.65	249.80	1.15	118.50	127.0

11.5.3 Phase 3 Drilling Campaign

In September, 2009, Phase 3 of the drill program started with the goal of delineating a 400 m strike length of the Main Zone on 25 m by 25 m centres to support the estimation of a Mineral Resource.

A total of 9,754.6 m were drilled in 64 diamond drillholes (including nine abandoned holes) and 3,840 samples were collected. The Phase 3 drillholes are summarized in Table 11.6.

Table 11.6
Phase 3 Drill Collar Coordinates - La Manchuria Project

Hole_ID	Section	Easting	Northing	Elevation	Depth	Azimuth	Dip
LM-041-D	N5150	2432747.88	4666050.81	695.68	222.85	240	-45
LM-042-D	N5250	2432631.84	4666101.07	718.19	169.50	240	-45
LM-043-D	N5250	2432685.47	4666133.49	717.51	241.10	240	-45
LM-044-D	N5300	2432631.19	4666154.67	712.27	028.60	240	-45
LM-044A-D	N5300	2432632.23	4666155.23	712.26	192.10	240	-45
LM-045-D	N5300	2432671.02	4666176.65	715.33	248.00	240	-45
LM-046-D	N5345	2432620.05	4666196.93	711.01	206.00	240	-45
LM-047-D	N5345	2432661.87	4666222.64	708.93	199.75	240	-45
LM-048-D	N5390	2432548.19	4666223.18	701.09	139.80	238	-45
LM-049-D	N5390	2432596.23	4666244.72	700.45	204.70	238	-45
LM-050-D	N5480	2432544.09	4666309.64	674.67	173.60	238	-45
LM-051-D	N5435	2432577.31	4666268.69	693.44	049.70	250	-45

Hole_ID	Section	Easting	Northing	Elevation	Depth	Azimuth	Dip
LM-051A-D	N5435	2432577.77	4666268.69	693.47	189.50	250	-45
LM-05174-D	N5435	2432612.27	4666298.42	693.31	207.60	240	-45
LM-053-D	N5100	2432747.07	4665993.91	681.61	149.60	240	-45
LM-054-D	N5150	2432788.68	4666072.70	696.20	290.40	240	-45
LM-055-D	N5250	2432714.72	4666149.29	712.76	285.20	240	-45
LM-056-D	N5250	2432653.25	4666112.75	718.94	025.40	240	-45
LM-056A-D	N5250	2432650.88	4666109.43	718.75	191.20	240	-45
LM-057-D	N5150	2432725.70	4666037.92	696.70	174.00	240	-45
LM-058-D	N5150	2432769.09	4666061.22	696.02	228.80	240	-45
LM-059-D	N5250	2432613.71	4666089.73	714.30	115.50	240	-45
LM-060-D	N5275	2432615.32	4666122.55	712.93	145.25	240	-45
LM-061-D	N5275	2432659.37	4666146.19	716.24	208.50	240	-45
LM-062-D	N5225	2432643.03	4666078.86	719.19	151.00	240	-45
LM-063-D	N5200	2432636.54	4666049.76	716.81	131.00	240	-45
LM-064-D	N5200	2432680.40	4666075.57	714.30	145.45	240	-45
LM-064A-D	N5200	2432677.32	4666073.00	714.46	184.50	240	-45
LM-065-D	N5300	2432612.87	4666143.18	709.47	102.30	240	-45
LM-066-D	N5300	2432653.82	4666166.32	714.02	170.20	240	-45
LM-067-D	N5300	2432692.50	4666187.46	711.66	190.40	240	-45
LM-068-D	N5325	2432610.68	4666167.73	708.82	126.10	240	-45
LM-069-D	N5325	2432652.23	4666190.88	714.93	175.20	240	-45
LM-070-D	N5345	2432597.43	4666186.03	707.24	115.60	240	-45
LM-071-D	N5345	2432644.26	4666211.14	711.27	165.00	240	-45
LM-072-D	N5375	2432555.89	4666197.05	699.95	067.50	240	-45
LM-073-D	N5375	2432597.30	4666217.68	705.75	025.60	240	-45
LM-073A-D	N5375	2432597.30	4666217.68	705.75	172.60	240	-45
LM-074-D	N5175	2432707.22	4666059.06	706.43	181.50	240	-45
LM-075-D	N5125	2432781.37	4666042.15	688.78	206.00	240	-45
LM-076-D	N5125	2432737.56	4666017.62	688.55	135.50	240	-45
LM-077-D	N5375	2432530.49	4666234.99	695.19	107.20	240	-53
LM-078-D	N5420	2432583.09	4666263.33	694.76	156.00	240	-45
LM-079-D	N5450	2432541.47	4666285.65	680.46	025.40	240	-45
LM-079A-D	N5450	2432541.24	4666285.47	680.55	121.60	240	-45
LM-080-D	N5435	2432553.74	4666269.89	689.50	130.30	240	-45
LM-081-D	N5435	2432595.08	4666291.50	692.14	184.80	240	-45
LM-082-D	N5435	2432526.17	4666254.32	690.91	096.80	240	-45
LM-083-D	N5450	2432584.04	4666312.40	682.95	155.40	240	-45
LM-084-D	N5390	2432528.36	4666202.03	693.52	100.00	240	-45
LM-085-D	N5390	2432570.54	4666227.26	703.57	169.50	240	-45
LM-086-D	N5375	2432642.34	4666244.63	705.52	091.70	240	-45
LM-087-D	N5370	2432685.71	4666267.93	697.61	133.40	240	-45
LM-088-D	N5390	2432636.65	4666264.83	702.37	025.60	232	-45
LM-088A-D	N5390	2432636.74	4666265.41	702.20	185.00	240	-45
LM-089-D	N5275	2432572.82	4666098.38	701.87	094.50	240	-45
LM-090-D	N5275	2432705.34	4666173.26	711.79	026.00	240	-45
LM-090A-D	N5275	2432705.68	4666173.57	711.68	235.30	240	-45
LM-091-D	N5225	2432689.94	4666106.40	716.95	207.00	240	-47
LM-092-D	N5100	2432802.35	4666025.90	682.00	220.80	240	-45
LM-093-D	N5100	2432779.63	4666014.53	682.41	034.70	240	-45
LM-093A-D	N5100	2432777.57	4666013.53	682.38	202.70	240	-45
LM-094-D	N5475	2432484.32	4666279.31	668.83	109.80	60	-45
LM-095-D	N5175	2432556.55	4665981.09	694.36	209.00	60	-45

The significant drill intersections from Phase 3 are summarized in Table 11.7. Intersections averaging at least 5 g/t Au or 70 g/t Ag and containing less than 5 m of lesser grade mineralization are considered significant, for the purposes of this summary.

The Phase 3 diamond drill program confirmed and extended the La Manchuria mineralized package of high grade gold and silver mineralization. The zone remains open but obscured by post-mineral cover. It remains open in both directions as well as down dip.

Table 11.7
Phase 3 - Significant Intercepts

Hole ID	From	То	Interval	Au g/t	Ag g/t
LM-041-D	127.60	128.10	0.50	25.20	482.0
LM-041-D	182.10	182.60	0.50	27.00	324.0
LM-042-D	105.45	107.00	1.55	257.79	4,237.1
including	105.45	106.20	0.75	474.00	6,730.0
LM-042-D	134.30	134.85	0.55	12.45	18.0
LM-043-D	120.40	121.25	0.85	7.92	1,180.0
LM-043-D	209.05	209.95	0.90	11.95	12.0
LM-044A-D	86.90	87.40	0.50	7.26	127.0
LM-044A-D	111.00	111.50	0.50	22.90	34.1
LM-044A-D	178.00	178.50	0.50	10.95	7.7
LM-045-D	136.50	137.00	0.50	54.50	1,400.0
LM-046-D	114.60	115.10	0.50	16.95	180.0
LM-046-D	123.15	124.00	0.85	6.18	44.5
LM-046-D	125.65	126.15	0.50	23.30	31.0
LM-048-D	87.00	89.00	2.00	2.70	727.0
LM-048-D	118.50	119.50	1.00	7.54	166.5
including	118.50	119.00	0.50	12.80	19.0
LM-049-D	193.50	194.00	0.50	4.19	129.0
LM-050-D	46.70	47.35	0.65	6.53	4,190.0
LM-051A-D	138.20	139.70	1.50	34.00	32.5
LM-051A-D	146.90	148.00	1.10	5.69	13.9
LM-052-D	92.95	93.65	0.70	6.81	2,690.0
LM-056A-D	125.00	125.50	0.50	180.00	205.0
LM-056A-D	128.40	128.90	0.50	5.06	174.0
LM-056A-D	153.70	154.80	1.10	7.05	15.4
LM-057-D	131.50	133.60	2.10	102.97	135.1
including	131.50	132.50	1.00	212.00	228.0
LM-057-D	140.00	142.00	2.00	7.80	25.8
LM-057-D	160.00	161.00	1.00	5.94	19.9
LM-058-D	160.00	160.60	0.60	9.10	463.0
LM-058-D	212.35	212.85	0.50	8.66	103.0
LM-060-D	96.00	98.00	2.00	52.55	3,274.5
including	96.00	97.00	1.00	94.20	5,920.0
LM-060-D	112.00	114.00	2.00	4.06	143.0
LM-060-D	139.00	140.00	1.00	4.15	6.0
LM-061-D	105.50	106.00	0.50	7.48	616.0
LM-061-D	200.50	201.20	0.70	8.57	204.0
LM-062-D	127.90	129.00	1.10	11.30	161.6
including	127.90	128.40	0.50	19.80	38.8
LM-064A-D	154.80	155.30	0.50	46.00	603.0
LM-064A-D	170.00	171.00	1.00	18.65	11.5
LM-068-D	85.60	86.50	0.90	41.90	87.5
LM-068-D	112.70	114.20	1.50	42.67	588.7

Hole ID	From	To	Interval	Au g/t	Ag g/t
including	113.70	114.20	0.50	122.50	630.0
LM-067-D	149.00	149.50	0.50	5.44	13.2
LM-068-D	72.00	76.50	4.50	20.53	197.6
including	76.00	76.50	0.50	178.00	923.0
LM-068-D	89.40	90.40	1.00	18.80	475.0
LM-069-D	34.05	34.55	0.50	6.26	1,840.0
LM-069-D	133.00	134.60	1.60	22.60	60.9
including	133.00	133.50	0.50	54.50	123.0
LM-070-D	82.55	83.05	0.50	20.80	511.0
LM-072-D	60.50	61.00	0.50	32.50	2,370.0
LM-073A-D	118.00	119.10	1.10	60.20	180.0
LM-074-D	145.00	146.75	1.75	19.95	379.4
including	145.00	146.15	1.15	27.40	94.8
LM-074-D	156.20	157.45	1.25	49.44	252.8
LM-074-D	161.80	162.60	0.80	14.15	249.0
LM-075-D	145.30	145.80	0.50	7.81	1,340.0
LM-075-D	152.40	152.90	0.50	6.01	1,115.0
LM-075-D	183.00	184.40	1.40	16.20	614.0
LM-078-D	104.50	107.00	2.50	5.58	16.1
LM-079A-D	18.85	21.00	2.15	3.85	1,262.4
LM-080-D	74.40	75.50	1.10	7.91	8.7
LM-081-D	71.20	72.70	1.50	23.73	1,280.0
including	71.70	72.70	1.00	32.80	540.0
LM-082-D	44.45	45.50	1.05	12.80	9.4
LM-083-D	72.15	72.90	0.75	7.68	55.3
LM-083-D	84.35	84.85	0.50	18.05	8,960.0
LM-084-D	53.60	57.00	3.40	4.05	615.6
including	55.80	56.90	1.10	9.68	1,720.0
LM-084-D	73.00	73.50	0.50	51.40	300.0
LM-085-D	40.15	40.65	0.50	8.99	40.3
LM-085-D	91.50	93.00	1.50	6.33	23.3
LM-085-D	105.00	105.50	0.50	7.32	229.0
LM-088A-D	3.15	3.65	0.50	17.25	3,290.0
LM-088A-D	76.85	77.35	0.50	8.06	316.0
LM-088A-D	160.05	161.60	1.55	6.26	1,940.0
LM-091-D	96.90	98.50	1.60	3.32	412.0
LM-091-D	115.00	117.00	2.00	3.38	385.8
LM-092-D	160.75	161.35	0.60	5.05	1,130.0
LM-093A-D	122.20	125.00	2.80	26.04	5,224.3
including	122.20	122.70	0.50	145.00	28,207.0
LM-093A-D	137.55	142.65	5.10	25.89	334.0
including	138.40	139.30	0.90	111.00	896.0
LM-094-D	55.00	55.50	0.50	7.76	65.0
LM-095-D	90.65	91.35	0.70	7.24	200.0
LM-095-D	133.10	133.70	0.60	9.55	1,570.0
LM-095-D	167.00	167.50	0.50	6.81	663.0

A total of 25 geological sections were generated by PGSA geologists using MapInfo/Discover GIS software on which interpreted lithologic boundaries, zones of oxidation, mineralization and structural features were defined. Figure 11.2 is Geological Section N5200 showing typical boundaries for lithology, styles of mineralization and oxidation.

Figure 11.2 La Manchuria Project Section N5200

12.0 SAMPLING METHODS AND APPROACH

12.1 TRENCH SAMPLES

Trenches were laid out with Brunton compass and hand-held GPS. A backhoe excavator was used to dig down to bedrock, a maximum of three metres. The trenches were then cleaned and mapped by a PGSA geologist. Trench sampling and logging were carried out under the supervision of PGSA geologists; sample intervals were generally marked using a measuring tape following geological criteria (e.g. zones of similar mineralogical/geological features). Two parallel cuts, five-centimetres apart and five-centimetre deep, were made using a mechanical diamond saw. The samples were collected by removing the material between the two saw cuts with a hammer and chisel to the limits of marked sample intervals and placing the broken material in plastic sample bags. Each sample bag was tagged, sealed and transported back to the base camp where each sample was weighed and recorded for final laboratory dispatch. Surveying of the trench locations was carried out by a qualified surveyor using a differential GPS.

12.2 REVERSE CIRCULATION SAMPLING METHODS

PGSA field technicians processed each one metre sample as follows:

- Riffle splitter used to collect a representative 4 kilogram sub sample which was bagged immediately in a plastic polyurethane bag (dry samples), or in polypropylene cloth bags (wet samples).
- Sample weighed on-site and sample weight recorded with a description of the sample's moisture (e.g. dry, moist or wet).
- The rifle splitter was cleaned after each sample interval with compressed air sourced from the drilling rig. The cyclone was thoroughly cleaned between drillholes and every effort made to ensure quality control on-site.

In the case of wet RC drilling conditions, a rotary splitter was utilized in lieu of the conventional cyclone which allowed for a 1/8 and 7/8 split of the bulk one metre interval. Individual interval samples were taken from the 1/8 split portion of the splitter, placed in consecutively numbered lines peripheral to the drill platform and weighed after the excess water had drained through the pores of the polypropylene cloth bags. The wet splitter was thoroughly cleaned after each hole to minimize contamination.

12.3 DIAMOND DRILLING SAMPLING METHODS

During drilling, the diamond core samples were managed according to the following protocol:

• The core barrel was retrieved following each 'run' via wire line, after which the core was immediately removed from the core barrel and placed in a core cradle. For

diamond drilling conducted from January, 2008, during which the use of a core barrel sleeve tube (HQ3) was implemented, the core was 'pumped' out hydraulically.

- During this process care was taken by the contractor and PGSA field technician to ensure that core was maintained intact and in the correct order within the cradle.
- Core was washed and orientated in order to place the core in its predrilled in situ position. The vertices of any mineralized structures were preferentially aligned with the upper axis of the core
- Using the drilling interval blocks, as defined and provided by the driller, the PGSA technician calculated and marked the individual metre limits on the core
- Recovered length and percentage of both the total drilled interval and each complete unit depth metre interval was calculated and recorded on the Drill Log sheet
- Rock quality designation (RQD) for each core run was calculated by the PGSA field technician using the total length of core pieces greater than or equal to 10 cm in the core run
- Core was carefully placed into numbered wooden core boxes with wooden interval blocks inserted in the appropriate positions. The metre intervals were marked on the core and the core boxes.

12.4 DRILL SAMPLE RECOVERY

12.4.1 Diamond Drill Core Recovery

Based on the results of 7,946 diamond drill core intervals, overall core recovery averaged 87%.

Internal reviews of the recoveries have been done in the different geological zones: veinlets, fault zones with gouge and fracture-filling veins. The analysis shows that core is most fractured, and the core recovery is poorer, in the fault zones where the majority of the mineralization is located. The recovery does not show a significant difference between the supergene and hypogene zones and depends on the number of the fractures and quantity of gouge in the sample interval.

12.4.2 Reverse Circulation Sample Recovery

Reverse circulation was used to drill the precollars in Phase 2 of the drilling program. Recovery was calculated by dividing the dry weight of each one metre sample by the theoretical weight of the volume of rock. The rock densities were derived from the respective rock specific gravity values defined below in Section 12.7. In the case of wet RC samples, the wet bulk sample residues (i.e. after splitting) were left to dry prior to weighing, to which the recorded weight of the split laboratory sample was subsequently added to

calculate recoveries. The percentage of recovery in the different holes presented similar values except in the first argillized or faulted rock package where the recovery was low, while in the silicified zones the percentage of recovery was close to 100%.

Theoretical sample weight/metre values utilized in recovery calculations for hypogene and oxide zones were calculated as follows:

• Oxide: 3.1416 (pi) x 0.066 m² (radius squared) x 2.3 t/m³ (density) = 31.8 kg.

• Sulphide: 3.1416 (pi) x 0.066 sq m² (radius squared) x 2.4 t/m³ (density) = 32.8 kg.

12.5 SPECIFIC GRAVITY DETERMINATIONS

Measurements of specific gravity (SG) were performed on site by PGSA. One hundred thirty-five samples of half HQ core from individual one metre drill core intervals were tested. The average weight of the dry samples was 0.66 kilograms.

The selected samples are representative of the different types of lithology, alteration, mineralization and levels of oxidization.

12.5.1 Specific Gravity Methodology

An external independent re-check of the in-house specific gravity determinations was performed Alex Stewart (Assayers) Argentina S.A. in Mendoza. Samples for specific gravity determinations were selected by the project geologist from 1/2 HQ core. The samples measured at least 20 cm in length and were sufficiently robust so as to remain intact during the measurement process.

The specific gravity measurements were performed by ASA using the following procedure:

- The samples were dried at 105°C for 2 hours.
- The dried samples are weighed.
- The sample is dipped in liquid paraffin; the excess wax is removed and the sample is allowed to cool.
- The sample is placed in a holder and submerged in a container filled with water at room temperature. The weight of the submerged sample is measured and recorded.
- SG is calculated.

The geologist also recorded the relevant lithology, mineralization type and oxidized state information for each core piece. The specific gravity of each core sample was calculated using the following equation:

SG = weight dry / (weight dry – weight submerged)

12.5.2 Specific Gravity Results

The La Manchuria specific gravity database consists of 135 water immersion density determinations performed during all drilling phases; 25, 5 and 105 in Phases 1, 2 and 3 respectively. The data are summarized below in Table 12.1.

Table 12.1
La Manchuria - Density Determinations – Summary Statistics

LITHOLOGY		OXIDATION			
		Ox	Trans	Нуро	
RHY	Mean SG	2.37	2.42	2.42	
	Max SG	2.58	2.61	2.60	
	Min SG	2.08	2.19	2.21	
	Number	39	19	59	
DAC	Mean SG			2.46	
	Max SG			2.70	
	Min SG			2.22	
	Number			18	

12.6 SUMMARY OF SAMPLING

In Micon's opinion, the drilling and sampling approach and procedures employed by PGSA meet industry standards.

13.0 SAMPLE PREPARATION, ANALYSIS AND SECURITY

13.1 GENERAL DESCRIPTION

The sampling of surface trenches RC drill cuttings was performed at the drill and diamond drill core was sampled at the Estancia La Pilarica base camp. Field technicians were given appropriate training and were supervised by a PGSA geologist. Care was exercised to eliminate sources of potential contamination:

- Wearing of jewellery was prohibited.
- Sample bags and core boxes were closed immediately upon the insertion/placement of the respective sample and kept off the ground on wooden pallets.
- Due care was taken during the transporting and processing of core samples, and in the subsequent storage of samples and core boxes.
- Sample bags were kept in a dust-free environment. After being filled, the sample bags were stapled shut and placed into burlap bags which were immediately closed with zip straps for shipping.

Micon concludes that the sampling methods employed by PGSA at La Manchuria meet industry standards.

13.2 TRENCH SAMPLES

As previously described in Section 10, trench samples were collected and bagged in the field at the La Manchuria Project area. Upon arrival at the base camp, the individual samples were logged, weighed and placed into burlap shipping sacks. The sacks were then labelled, ziptied, weighed and recorded in the sample dispatch log and stored ready for shipment.

13.3 REVERSE CIRCULATION DRILL SAMPLES

As previously described in Sections 10.2 and 12.2, the RC drill samples were collected and prepared at the drilling site. Other than packaging in sealed burlap bags, labelling, documenting and weighing prior to shipment, no other preparation was performed on the samples.

13.4 DIAMOND DRILL CORE SAMPLES

As described in Section 12.3 and Section 12.4, drill core was placed in the core cradle, washed, orientated and marked. Then the recovery and RQD were measured and recorded before the core was placed into the core boxes.

After logging the core, the geologist marked the core for sampling. The core was cut using a diamond saw. In order to standardize sampling methodology and allow for reconstruction of

the drillhole in 1/2 core, the left hand side of the cut core was selected for analysis and the right hand side was returned to the core box. At the end of each sample interval, a perpendicular saw cut was made to clearly mark the end and beginning of consecutive samples. During the cutting, the core sample intervals and sample numbers were repeatedly crosschecked.

Half core from each sample interval was placed in a clean, tagged plastic sample bag which was immediately closed after sampling, and the corresponding core interval was marked with an aluminum tag stapled to the core box. The bagged samples were placed in numbered burlap sacks, weighed and recorded for transport. The marking, sampling, and bagging process was conducted by the PGSA field technicians under supervision of the project geologist.

13.5 STORAGE AND TRANSPORT

Samples pending shipment were stored onsite at Estancia La Pilarica in a secure storage area and shipped weekly via a contracted private courier in a closed and locked truck compartment. The samples were transported directly to the designated laboratory in Mendoza, Argentina and were always accompanied by a required provincial transport permit in addition to a shipping dispatch and a letter addressing the particular analyses required, sample numbers, quantity and weights for the laboratory. The PGSA data manager was notified by the laboratory staff whenever samples were received by the laboratory.

13.6 LABORATORIES, METHODS AND PROCEDURES

ALS Chemex Patagonia S.A. and ACME laboratories have been used by PGSA during the La Manchuria exploration program. For surface and core sample rechecking, PGSA used ACME Lab with a preparation laboratory located in Mendoza, Argentina and testing laboratory located in La Serena, Chile. Samples that assayed greater than 10,000 g/t Ag were analyzed by ACME in Vancouver Canada.

ALS Chemex Patagonia S.A., which is an international recognized and accredited laboratory compliant to ISO Certified - 9001:2000 standards, was contracted for the geochemical analysis of the samples generated during the drilling campaigns at La Manchuria.

SGS Chile and Alex Stewart (Assayers) Argentina S.A. were used for the Screen Fire Assays and Bottle Roll Tests during 2010.

13.6.1 Sample Preparation and Analysis

All pulp samples received at ALS Chemex are furnished with a bar code label attached to the original sample bag. The system will also accept client supplied bar coded labels that are attached to sampling bags in the field.

The label is scanned and the weight of the sample is recorded together with additional information such as date, time, equipment used and operator name. The scanning procedure is used for each subsequent activity involving the sample from preparation to analysis, through to storage or disposal of the pulp.

At least one out of every 50 samples is selected at random for routine pulp QC tests (LOG-QC). For routine pulps, the specification is 85% passing a 75 micron screen. Other specifications may be checked as per client requirements.

The sample preparation protocol used by ALS Chemex for the La Manchuria samples is shown in Figure 13.1.

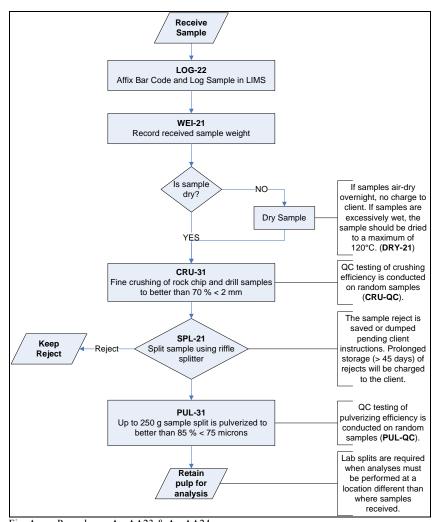


Figure 13.1
ALS Chemex - Sample Preparation Procedure

Fire Assay Procedure – Au-AA23 & Au-AA24 Fire Assay Fusion, AAS Finish

Sample Decomposition: Fire Assay Fusion (FA-FUS01 & FA-FUS02)

Analytical Method: Atomic Absorption Spectroscopy (AAS)

Fire assaying with an AA (Atomic Absorption) Finish was used to analyze the La Manchuria samples. The process is summarized below:

- A 50 gm prepared sample is fused with a mixture of lead oxide, sodium carbonate, borax, silica and other reagents as required, inquartered with 6 mg of gold-free silver and then cupelled to yield a precious metal bead.
- The bead is digested in 0.5 ml dilute nitric acid in the microwave oven, 0.5 ml concentrated hydrochloric acid is then added and the bead is further digested in the microwave at a lower power setting. The digested solution is cooled, diluted to a total volume of 4 ml with de-mineralized water, and analyzed by atomic absorption spectroscopy against matrix-matched standards.

13.7 QUALITY CONTROL

Quality control procedures consist mainly of the routine incorporation of certified geochemical standards, blanks and sample duplicates (RC and trench samples) into the lots of samples submitted to the laboratories for analysis. Every 10th sample in the sample stream was a QC sample inserted according to the following protocol:

- **Diamond Drilling:** alternate insertion of a certified laboratory standard or blank for every 10th sample.
- **RC Drilling:** Either a duplicate of the preceding sample interval was taken as a field duplicate, or a certified laboratory standard or a blank sample was inserted.
- **Trenching:** Either a duplicate of the preceding sample interval was taken as a field duplicate, or a certified laboratory standard or a blank sample was inserted.

13.7.1 Laboratory Standards & Blanks

PGSA employed three different Blank Standards, 21 Gold Standards and five Silver Standards. The standards are shown in Table 13.1 with the certified grades and standard deviations of each.

Table 13.1 Certified Standards Used in La Manchuria QA/QC Program

Standard	Au FA 50 (g/t)	Standard Deviation	Ag FA 50 (g/t)	Standard Deviation
G301-3	1.96	0.080	n/a	=
G302-6	0.99	0.050	n/a	=
G305-6	1.48	0.060	n/a	=
G305-7	9.59	0.330	n/a	=
G306-1	0.41	0.030	n/a	-
G307-7	7.87	0.280	n/a	-

Standard	Au FA 50	Standard	Ag FA 50	Standard
Standard	(g/t)	Deviation	(g/t)	Deviation
G397-3	1.73	0.120	n/a	-
G398-2	0.50	0.040	n/a	-
G399-10	13.20	0.880	n/a	-
G399-8	1.33	0.080	n/a	-
G399-9	6.27	0.310	n/a	-
G900-10	13.85	0.530	n/a	-
G900-2	1.48	0.060	n/a	-
G900-5	3.21	0.130	n/a	-
G900-7	3.22	0.160	n/a	-
G901-8	47.24	1.550	n/a	-
G903-6	4.13	0.170	n/a	-
G995-4	8.67	0.600	n/a	-
G997-5	7.31	0.330	n/a	-
G997-9	5.16	0.320	n/a	-
G999-8	3.42	0.190	n/a	-
GLG902-1	0.0028	0.002	n/a	-
GBM303-1	n/a	-	1419.6	73.5
GBM995-8	n/a	-	52.0	4.6
GBM997-6	n/a	-	462.7	27.7
GBM998-9	n/a	-	101.9	4.3
GBM999-3	n/a	-	291.2	16.3
B1	0.06	0.000	n/a	-
B2	0.04	0.000	n/a	-
Grey Blank	0.0028	0.002	0.6	0.5

A total of 881 QA/QC samples were submitted with the drill samples as part of the routine drill sample assay process during the drilling campaigns:

- 687 Gold standards, with certified ranging between 0.03 g/t and 47.24 g/t Au.
- 41 Silver standards, with certified ranging between 52 g/t and 1419.6 g/t.
- 145 blanks.
- 8 duplicates.

The analytical results of each individual standard were plotted against three upper and lower limits defined by +/-2 standard deviations and +/-3 standard deviations of the certified value, as well as +/-10% relative variance from the certified standard value. The Control Charts for all of the standards and blanks are found in Appendix 1.

Seventeen Au standard analyses and three Ag standard analyses returned values outside the industry accepted +/-3 standard deviation limits of the laboratory certified value, as summarized in Table 13.2. When this occurred, the five samples adjacent to the standard within the batch were reanalyzed (please see Section 13.7.2 for details). As part of these rechecks, a total of 171 sample pulps were re-analyzed for Au, of which 170 samples were rechecked by Au-AA (fire assay with AA finish) and one Ag gravimetric, together with 7 standards (6 samples Au-AA and 1 Ag gravimetric)

Table 13.2 La Manchuria - Certified Standards Results

STANDARD	ANALYSES	FAILED	RATE	Samples Re-analysed
G301-3	66	0	0.0%	0
G302-6	141	2	1.4%	19
G305-6	20	0	0.0%	0
G305-7	6	0	0.0%	0
G306-1	5	0	0.0%	0
G307-7	17	1	5.9%	11
G397-3	18	1	5.6%	6
G398-2	8	0	0.0%	0
G399-10	4	0	0.0%	0
G399-9	5	0	0.0%	0
G900-10	2	0	0.0%	0
G900-2	99	8	8.1%	76
G900-5	16	0	0.0%	0
G900-7	67	2	3.0%	19
G901-8	7	2	28.6%	11
G903-6	78	1	1.3%	7
G995-4	48	0	0.0%	0
G997-5	16	0	0.0%	0
G997-9	25	0	0.0%	0
G999-8	7	0	0.0%	0
GLG902-1	32	0	0.0%	0
Sub-Total Au	687	17	2.5%	149
GBM303-1	1	0	0.0%	0
GBM995-8	14	0	0.0%	0
GBM997-6	11	0	0.0%	0
GBM998-9	7	3	42.9%	2
GBM999-3	8	0	0.0%	0
Sub-Total Ag	41	3	7.3%	2
B1	4	0	0.00%	0
B2	5	1	20.0%	9
Grey Blank	136	2	1.5%	18
Sub-Total Blanks	145	3	2.1%	27
TOTAL	873	23	2.6%	178

13.7.2 Check Assay Results

The results for the original and recheck drill sample interval pulps show good correlation within +- 10% (Appendix 2) and all the standards that were included with the reanalysis returned values within the +- 10% variation limits of the certified standard values. As a result, it is considered that the original standards which returned a large variation from the expected values were either erroneously submitted and/or recorded by PGSA.

The interpretations of the scatter plots took into consideration the correlation of original and check assay values that were duplicated within plus or minus 10 and 20% limits, the linear regression trends generated by the respective values and the relative precision of the

laboratory values reported for the standards that were submitted within the respective check assay batches.

Figure 13.2 Original vs. Reanalyzed Samples Au (g/t)

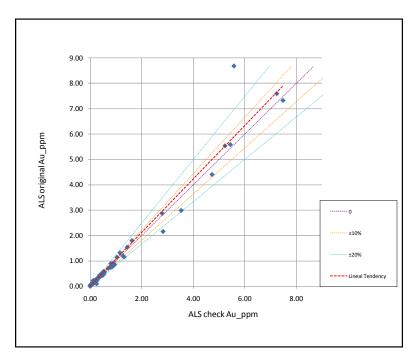
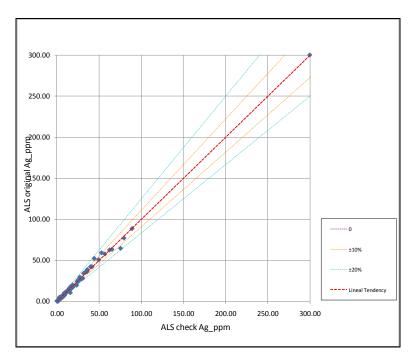



Figure 13.3 Original vs. Reanalyzed Samples Ag (g/t)

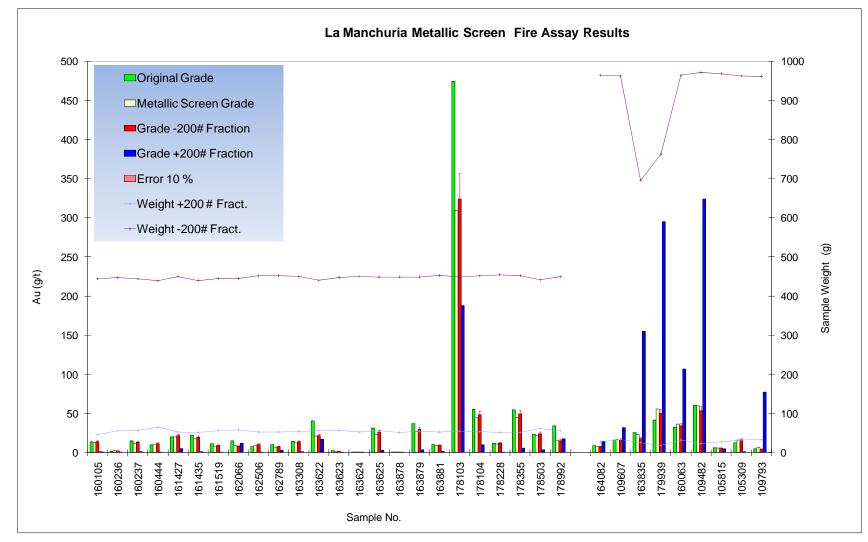
13.7.3 Field Duplicates – RC Drilling

A total of eight field duplicates were analyzed and all Gold assays showed a good correlation, within +-10% variation of the original assay (Please see Appendix 3). Correlation for Ag for the field duplicates reported generally within the +- 10-20% limits and, apart from a single outlier, indicated an overall slight positive bias of the original assay results compared to the duplicates.

13.7.4 Field Duplicates – Trenching

Two field duplicates were taken during sawn trench sampling throughout the La Manchuria Project area, which reported good repeatability and correlation within +/-10 to 30% relative error limits namely 3.49 ppm Au versus 3.76 (7.5%) and 0.21 ppm Au and 0.27 ppm Au (plus or minus 25%).

13.8 SCREEN FIRE ASSAYS


A total of 33 coarse rejects representing high, mid-range and low grade sample intervals were analyzed by Alex Stewart (Assayers) Argentina S.A. via the metallic screen fire assay technique in order to determine the size distribution characteristics of the gold mineralization.

The technique is designed to concentrate the potentially larger gold particles in the coarse fraction sample, given the tendency for gold grains to flatten during grinding, and enable semi-quantitative analysis on the potential presence and effects of coarse gold on sample analysis reproducibility of relatively small (50-gram) sample sizes used routinely for analysis.

Sample preparation involves crushing of the sample to 91% less than 200#. The undersize is sieved, weighed and split into three subsamples each of which is analyzed by fire assay. The oversize is weighed and the entire sample is assayed by fire assay with a gravimetric finish.

The weighted average grade of each sample was then calculated using the average of the three -200# fraction grades and the grade of the corresponding + 200# fraction. The original, individual and combined weighted average Au values are presented in Figure 13.4. Additionally, the coarse gold ratio (calculated by dividing the oversize Au concentration by the combined weighted average Au), in which values greater than 1 generally indicates a significant concentration of Au in the coarse fraction, are shown.

Figure 13.4 Metallic Screen Fire Assay Results – Au (g/t)

The results show good repeatability between the three individual assays of the three -200 # subsamples and in the +200# fraction a component of either un-ground particles hosting fine gold or that of coarse gold which is concentrated particularly in the high grade samples between 10 and 474 ppm Au. Good overall correlation was reported between original values and those obtained for the - 200# fraction and the combined weighted averages.

13.9 ADEQUACIES OF SAMPLE PREPARATION, SECURITY, AND ANALYTICAL PROCEDURES

In Micon's opinion, the sample preparation, security and analytical procedures meet industry standards and therefore the assay database is a suitable basis with which to estimate a Mineral Resource.

The number of Gold standards (21) is excessive and makes the QA/QC process difficult to manage. This particularly true when some standards are employed less than 10 times and when a number of the standards have certified values which are very similar to one another. It is recommended that the number of standards being used at any one time be reduced to about five which span a range of possible assays, including one that is close to the anticipated breakeven cut-off of a mining operation.

Further, the La Manchuria QA/QC program does not employ a second check laboratory. It is recommended that approximately 5% of the pulps be sent to a second laboratory to ensure that the primary lab is performing well. The sample lots sent to the second lab should also include standard reference materials in the same proportion as the lots sent to the primary lab.

14.0 DATA VERIFICATION

Micon began its data verification activities by conducting a site visit on January 27 and 28, 2010, where the field procedures for the drilling program were examined, and representative sections of drill core were reviewed. Micon found that the field procedures that were being used to set up the diamond drill, recover the core, transport the core to the logging facilities and the logging and sampling procedures were all being carried out to the best practices currently in use by the mining industry.

14.1 DRILLHOLE DATABASE

Micon continued its data verification activities by conducting a spot check of the drillhole database and exhaustively checking the principal drillhole files imported into the modelling software: collars, down-hole surveys, assay data and geology data. A number of errors were discovered consisting mainly of mismatched interval from and to data, illogical Core Recovery & RQD data and extreme changes in downhole dip and/or azimuth. All of these discrepancies were brought to the attention of PGSA and compared to the information contained in the drill logs and assay sheets. For the most part, the errors and discrepancies were the result of errors in data entry and easily corrected by PGSA.

14.2 SURFACE TOPOGRAPHY

Upon importing the cleaned drillhole data into Datamine's 3D modelling and visualization software, it could be seen that the drill collar elevations did not match the surrounding surface topography supplied by PGSA. Ten drillholes appeared more than 2 m above or below the surface. PGSA staff determined that the surface GPS survey was in error and reran the survey.

14.3 STANDARD CHECKS

Micon reviewed the QA/QC program and results. The program is well run and Micon has only minor recommendations concerning possible improvements as discussed in Section 13.9 of this report. The assay database is suitable to be used for mineral resource estimation.

15.0 ADJACENT PROPERTIES

As previously discussed in Section 9.2, no significant systematic exploration works have been done by PGSA in peripheral areas to the La Manchuria Project within an approximate radius of less than 3 km. The proposed exploration work will be included in the recommendation item.

16.0 MINERAL PROCESSING AND METALLURGICAL TESTING

16.1 METALLURGICAL TEST BACKGROUND

PGSA contracted SGS Minerals Services of Santiago, Chile to perform metallurgical tests on La Manchuria samples. The initial tests were to determine the gold and silver recovery using a cyanide leach on seventeen core reject composite samples. This was followed by gravity and flotation recovery tests of three composites representing mineralization from the southern, northern and central parts of the deposit.

Assays were performed on the samples to determine the head grades, to quantify any coarse metallic effects (nugget effect) and to assay the test products.

16.2 CYANIDE LEACH TESTS

16.2.1 Head and Metallic Assay Results

The results from fire assays, and from plus-and-minus 200 mesh analysis on the head samples are contained in SGS's report; Gold Assay in Gold Ores, Final Report for PGSA, February 2010. Interpretation of the metallic assay results can be found in Section 13.8.

The head assay results are summarized below in Table 16.1.

Table 16.1 Metallic Fire Assay Results

Sample No.	La Manchuria No.	Composite No.	*Percentage +200 mesh	Percentage - 200 mesh	Au (g/t) +200#	Au (g/t) - 200#	Average Au (g/t)
1	M-170878	1	9.4	90.6	1.4	13.7	12.6
2	M-170879	2	11.1	88.9	0.4	2.6	2.4
3	M-170880	2	11.4	88.6	1.3	13.5	12.1
4	M-170881	3	12.9	87.1	0.7	11.6	10.2
5	M-170882	4	10.4	89.6	5.2	21.6	19.9
6	M-170883	5	10.6	89.4	1.4	19.6	17.6
7	M-170884	6	11.2	88.8	0.5	9.4	8.4
8	M-170885	7	11.5	88.5	12.4	8.5	8.9
9	M-170886	8	10.5	89.5	0.4	10.6	9.5
10	M-170887	9	10.5	89.5	2.9	7.6	7.1
11	M-170888	10	10.7	89.3	1.2	13.9	12.5
12	M-170889	11	11.2	88.8	17.1	21.6	21.0
13	M-170890	11	11.4	88.6	0.4	2.0	1.8
14	M-170891	11	10.4	89.6	0.0	0.2	0.1
15	M-170892	11	11.1	88.9	2.8	26.3	23.7
16	M-170893	12	10.4	89.6	0.1	0.3	0.3
17	M-170894	12	10.8	89.2	3.9	29.6	26.8
18	M-170895	12	10.4	89.6	1.9	9.4	8.6
19	M-170896	13	10.9	89.1	187.8	324.0	309.0
20	M-170897	13	10.7	89.3	10.1	48.4	44.3
21	M-170898	14	10.3	89.7	0.7	12.3	11.1
22	M-170899	15	10.2	89.8	5.9	49.3	44.9
23	M-170900	16	12.3	87.7	3.8	24.3	21.8
24	M-170901	17	11.1	88.9	17.9	15.2	15.5

^{*} after lab crushing

16.2.2 Leach Test Results

SGS received 24 samples from PGSA to form 17 composite samples as per PGSA's request. The composites were fire assayed for gold, and also assayed for metallic gold to quantify native gold and nugget effects. The gold assays are summarized in Table 16.1.

SGS released a report on the leach tests showing excellent gold recoveries to solution averaging 97% in 15 of the 17 composites. The report is titled Cyanide Leaching Tests in Bottles with Gold Ores, February, 2010.

Two composite samples #2 and #13 had lower gold recoveries of 79.8% and 25.1%, respectively. These two composites require further testing to determine the cause of the low recoveries. The Leach Test results are shown in Table 16.2.

Table 16.2 SGS Leach Test Summary

Composite No.]	Recovery (%)	Ca	lculated Head Gra	ade
Composite No.	Au	Ag	Cu	Au (g/t)	Ag (g/t)	Cu (ppm)
1	96.0	90.3	56.6	15.6	287.8	91.8
2	79.8	56.7	63.4	5.8	3,445.4	80.9
3	98.6	51.7	20.8	10.1	68.2	23.8
4	89.1	85.2	30.3	19.1	3,159.5	85.3
5	99.2	83.9	69.3	21.6	579.8	99.3
6	97.4	61.1	46.3	8.4	19.9	54.0
7	98.8	90.2	18.8	18.8	20.2	24.4
8	98.8	81.4	53.8	9.8	92.9	88.0
9	96.6	51.8	54.4	7.4	786.2	245.9
10	97.9	63.8	19.9	15.5	24.8	24.9
11	98.1	85.3	60.9	16.3	319.5	255.5
12	97.5	90.3	48.5	18.2	154.9	77.5
13	25.1	51.6	69.7	42.4	4,087.1	845.6
14	98.6	41.9	56.6	13.2	72.1	69.1
15	91.6	65.2	8.7	39.3	1,361.0	350.0
16	99.0	93.3	44.5	22.3	44.5	89.6
17	97.5	60.1	29.9	11.8	143.9	141.3
11 repeat	98.0	98.1	76.2	14.7	286.6	208.4
Average	92.1	72.3	46.0	17.2	830.8	158.6
Average (w/o 2 & 13)	97.0	74.6	43.5	16.4	463.9	120.6

Silver head grades and recoveries were highly variable with silver recoveries ranging between 90% and 42%. It is recommended that a mineralogy study be undertaken to determine the silver association. The silver recovery should also be mapped by location in the deposit as an aid to future mine modeling and scheduling.

The Alex Stewart results also show excellent gold and silver recoveries and quick leach kinetics, with a complete leach being attained after 48 hours. The quick leach times may be

due to the particle size of the pulverized leach charges, 95% minus 140 mesh (105 microns). A grind size versus leach kinetics study is recommended.

Cyanide consumptions were high with the majority above 3 kg/t, especially composite #4 at 5.3 kg/t. Lime consumptions were also high with the majority above 2.5 kg/t especially composite #14 at 7.13 kg/t which would suggest an acid generating component. The high reagent consumptions may be due to the fine grind size for these preliminary tests.

The following two tables are a summary of the SGS report. Additional information can be found in the SGS report titled Cyanide Leaching Tests in Bottles with Gold Ores, February, 2010.

16.3 GRAVITY AND FLOTATION TESTS

16.3.1 ICP and Head Assay Results

For the gravity and flotation tests, three composites of La Manchuria samples were made from course rejects of diamond drill core samples. ICP analyses of these samples are shown below in Table 16.3.

Table 16.3
Original ICP Assays Results of the Samples selected for the Concentration and Flotation Test

Compo	osite	Sample	Original Au_ppm	Ag_ppm	Cu_ppm	Pb_ppm	Zn_ppm	As_ppm	Sb_ppm	Hg_ppm CV	S_%
	Southern	109544	27.40	94.80	35	Cu_ppin 10_ppin Zii_ppin As_ppin CV 5_70					
	Southern	109545	5.67	925.00	138	330	297	66	357	0.7	1.25
-	Southern	109556	41.80	179.00	62	94	61	8	43	0.29	0.04
	Southern	109557	56.50	321.00	213	139	103	18	184	0.18	0.58
C1-170070	Southern	179824	46.00	603.00	74	39	71	76	267	0.2	0.53
	Southern	179834	18.65	11.50	27	19	4	58	21	0.09	1.2
	Southern	179738	19.80	38.80	19	28	3	264	53	1.92	0.11
	Southern	179739	4.22	264.00	25	20	6	265	85	0.49	0.68
	Northern	160236	1.94	166.00	18	27	10	580	182	0.11	0.04
	Northern	160237	14.85	6,660.00	115	347	47	1,080	806	7.11	0.14
CF-170897	Northern	105373	18.05	8,960.00	982	566	1540	2,800	5,370	6.3	0.98
CF-170897	Northern	178992	34.00	32.50	31	15	91	135	24	0.18	0.79
	Northern	109933	5.58	2,760.00	14	169	7	490	259	1.98	0.05
	Northern	109934	32.80	540.00	13	61	7	1,040	200	CV 3 3 0.13 67 0.7 3 0.29 64 0.18 67 0.2 1 0.09 3 1.92 65 0.49 62 0.11 66 7.11 67 70 6.3 4 0.18 69 1.98 60 0.21 63 0.2 3 1.1 65 0.24 66 0.11 65 0.26 63 0.2	0.07
	Central	179962	2.75	568.00	31	71	4	156	193	0.2	0.51
	Central	179963	122.50	630.00	227	320	129	185	513	1.1	0.4
	Central	178355	54.50	1,400.00	572	424	1080	74	845	3.1	1.34
CF-170898	Central	178488	16.95	180.00	200	87	144	97	155	0.24	0.58
C1 -1 /0696	Central	178503	23.30	31.00	78	101	67	46	36	0.11	1.67
	Central	109215	54.50	123.00	157	163	231	67	125	0.26	0.43
	Central	109216	8.10	32.60	38	20	84	109	33	0.2	0.83
	Central	109156	18.80	475.00	59	108	45	141	138	0.4	0.66

The grades of the three composites are shown below in Table 16.4:

Table 16.4
Gravity and Flotation Head Grades

Sample No.	La Manchuria No.	Au (g/t)	Ag (g/t)
1	CF-170896	33.1	212
2	CF-170897	22.9	1,718
3	CF-170898	34.2	398
4	composite	29.8	611

16.3.2 Gravity Recovery Test Results

Three composite samples were sent to SGS for gravity separation and flotation recovery tests. The samples were sent to SGS from PGSA via ACME labs and were received on March 17, 2010. The head grades of these samples are shown in Table 16.4 and test results, gravity concentrate grades and recoveries, are presented in Table 16.5. Two kilogram sample charges were used, which may have been too small for representative gravity tests, and could explain the wide range of recoveries, besides being caused by any lithographical differences between samples.

Table 16.5 Gravity Test Results

Sample No.	La Manchuria No.	Concentrate Weight (%)	Au (g/t)	Ag (g/t)	Au Recovery (%)	Ag Recovery (%)
1	CF-170896	3.20	304.6	1,600	32.3	21.2
2	CF-170897	7.11	214.6	9,347	79.9	37.4
3	CF-170898	3.48	171.7	1,273	17.4	11.5
4	composite	1.50	437.7	3,797	23.1	9.2

16.3.3 Flotation Recovery Test Results

A one kilogram charge was ground for approximately twelve minutes to produce a flotation feed size of 80% passing 150 microns. The tests were conducted at a neutral pH of 7 using 30g/t potassium amylxanthate as the collector and 15 g/t MIBC as the frother. Float times were 2, 6, 10 and 20 minutes.

Table 16.6: Flotation Test Results

Sample No.	La Manchuria No.	Product	Wt%	Au (g/t)	Ag (g/t)	Cum Rec. Au (%)	Cum Rec. Ag (%)
CF-170896	CF-170896	concentrate 1	5.2	422.6	2,723	64.4	65.1
1	Southern sample	concentrate 2	3	150.3	867	77.3	76.9
1		concentrate 3	1.7	41.5	237	79.4	78.7
		concentrate 4-5	2.2	14.4	118	80.3	79.9

Sample No.	La Manchuria No.	Product	Wt%	Au (g/t)	Ag (g/t)	Cum Rec. Au (%)	Cum Rec. Ag (%)
	CF-170897	concentrate 1	2.4	216.0	45,846	27.6	63.0
2	Northern sample	concentrate 2	3.1	29.0	5,068	32.5	72.1
		concentrate 3	2.3	10.0	1,381	33.7	74.0
		concentrate 4-5	2.8	9.6	956	35.2	75.5
	CF-170898	concentrate 1	3.1	447.1	5,024	42.0	43.6
3	Central sample	concentrate 2	2.5	70.2	1,018	47.3	50.7
3		concentrate 3	1.6	24.0	342	48.5	52.3
		concentrate 4-5	2.6	16.6	218	49.8	53.9
	Composite	concentrate 1	3.1	648.5	14,397	68.0	74.7
4	of the three above	concentrate 2	2.5	93.9	767	76.1	78.0
4		concentrate 3	1.5	44.7	667	78.4	79.7
		concentrate 4-5	3.3	16.8	201	80.3	80.8

16.4 CONCLUSIONS AND RECOMMENDATIONS

Metallurgical tests completed to date are preliminary, and show all three recovery operations tested recover gold and silver to a lesser or greater degree. Further tests are required on a larger sample size to quantify the recovery in order to design a process flowsheet. Tests should focus on development of the flowsheet with placement of the recovery operations, such as gravity recovery followed by flotation followed by a cyanide leach of the flotation tails. Column leach tests should also be scheduled if low grade ores are being considered for gold and silver recovery.

Overall process recoveries can then be compared to the capital and operating expense to determine the lowest capital to allow for the highest returns for the recovery processes selected

Leach samples #2 and #13 showed low gold recoveries. Further testing, to determine the cause of the low recoveries, is required before a mine model can be developed.

As silver is estimated to represent about 25% of the value of the resource, more work is required to determine silver head grades, mineralization and recovery. There appears to be a silver grade versus recovery relationship that must be confirmed before a mining model can be developed. The gold grade versus recovery relationship is much less pronounced since gold is more quickly recovered in a cyanide leach than is silver.

Geological reports indicate the presence of fine clays and clay generating minerals. The types and amounts of fine clays generated in the milling process will need to be determined for process selection and tailings rheology.

Bond work indexes are also required to determine milling equipment sizes and required electrical power, along with tailings rheology and deposition tests for the tailings storage design.

17.0 MINERAL RESOURCE AND MINERAL RESERVE ESTIMATES

17.1 INTRODUCTION

The La Manchuria deposit was modeled based on cross-sectional interpretations generated by PGSA geologists. Seventeen cross-sections were generated at an orientation of 60°, spaced approximately 25 m apart and covering a 375 m strike length of the La Manchuria vein system.

A rotated block model was built using Datamine 3D modeling software. The model extended 50 m northwest and southeast of the cross-sectional interpretations thus containing a volume 475 m along strike (X, azimuth 150°), 370 m across strike (Y, azimuth 60°) and 300 m in the vertical direction (Z). The blocks were 5 m by 1 m by 5 m in the X, Y & Z directions, respectively.

Inverse-distance cubed (ID³) was used to estimate the grades of gold and silver. The Mineral Resource above a break-even cut-off grade of 0.75 g/t gold equivalent (AuEq) is summarized in Table 17.1.

Table 17.1
La Manchuria - Mineral Resource Summary (above a cut-off of 0.75 AuEq (g/t)

Ind	icated		Grade (g/t)		Metal (Oz)			
Domain	Tonnes	Au	Ag	AuEq	Au	Ag	AuEq		
Oxide	141,570	1.91	139.1	3.12	8,675	633,338	14,198		
Hypogene	284,136	3.46	133.0	4.54	31,642	1,214,873	41,486		
Total	425,705	2.95	135.0	4.07	40,317	40,317 1,848,211			
Inf	erred		Grade (g/t)					
Domain	Tonnes	Au	Ag	AuEq	Au	Ag	AuEq		
Oxide	496,179	1.33	42.5	1.66	21,138	678,485	26,462		
Hypogene	972,840	1.64	53.0	2.05	51,197	1,656,751	64,220		
Total	1,469,020	1.53	49.4	1.92	72,335	2,335,236	90,682		

The following economic assumptions were used in calculating the AuEq grade of each block:

Gold Price: \$US 925/oz Gold recovery: 95% Silver Price: \$US 14.50/oz Silver Recovery: 60%

Where:

- 1) Metal Value = Grade * Metal Price * Metallurgical Recovery * 0.032151
- 2) AuEq = (Au Value + Ag Value) / (Au Price * 0.032151)

The resources in this report were estimated in accordance with the definitions contained in the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Standards on Mineral Resources and Reserves Definitions and Guidelines that were prepared by the CIM Standing Committee on Reserve Definitions and adopted by the CIM Council on December 11, 2005.

17.2 WIREFRAME MODELING

17.2.1 Lithologic Wireframes

Three lithologic units are present on the La Manchuria property: Rhyolite, Dacite and Andesite. Surface weathering has resulted in a layer of oxidation of variable thickness across the project area and a thin layer of overburden covers the property. Each of these geological units was interpreted on the cross-sections and modeled in 3D. Wireframe solids were built to model the lithology and undulating surfaces were built of surface topography, the base of the overburden and the interface between oxidized and unoxidized rock.

17.2.2 Mineralized Zone Wireframes

The La Manchuria mineralization occurs in veins, veinlets and fracture-fillings of variable continuity. PGSA geologists generated sectional interpretations of the 25 higher grade veins which appeared to show reasonable continuity in cross-section and between adjacent cross-sections. Micon imported these interpretations into Datamine where the number was reduced to 13 veins and mineralized zones. This was accomplished by combining neighbouring veins which appeared to show continuity along strike from cross-section to cross-section. In addition, 2 major Faults, Pancho and F1, were modeled because they off-set lithology, terminate or off-set mineralized zones and often contain faulted fragments of mineralization.

Wireframe solids were built to model the 13 mineralized zones and 2 faults. These wireframes were later used to flag the drillhole intervals that fell inside each mineral zone. All of the remaining intervals, outside of the mineral zone and fault wireframes and below the Overburden were assigned the MZON code 40. Overburden was not estimated.

17.3 DOMAINING

The geological domain codes generated in the model and used during mineral resource estimation are a combination of lithology and oxidation as shown in Table 17.2, below.

Table 17.2 La Manchuria - Geological Domain Codes

DOMAIN	Oxidized	Hypogene
Overburden	90	-
Rhyolite	11	10
Dacite	21	20
Andesite	-	30

17.4 COMPOSITING

The sample data were composited to a one metre length, honouring mineral zone contacts. The minimum composite length is 0.5 m with remnants, less than 0.5 m in length, being added to the previous composite. Unsampled intervals were assigned a grade of 0 before the composites were generated. A total of 17,507 composites were generated of which 17,002

(97.12%) were 1 m in length, 296 (1.69%) were less than 1 m long and 209 (1.19%) were greater than 1 m. The summary statistics of the composite data are discussed below, in Section 17.5.

17.5 STATISTICS AND CAPPING

The La Manchuria gold and silver composite data are both strongly positive skewed lognormal distributions. This is a typical characteristic of precious metal vein deposits in which a very large proportion of the value (metal content) of the deposit is represented by a very small number of samples. An understanding of the geological controls on the location, orientation and continuity of the mineralized structures and zones, which host these higher grade data, is critical to geological modeling and mineral resource estimation in this type of deposit.

Often, geological understanding and modeling are not enough to limit the influence of the very high grade data and capping of high grade data and/or modified estimation parameters are required. Micon has employed both of these techniques in the estimation of the La Manchuria mineral resource.

A good indicator of the necessity of capping is the Coefficient of Variation (CV). If the CV of a sample population exceeds 1.2, one is well advised to explore the option of capping. In Table 17.3, below, it can be seen that a number of the mineral zones have CVs which exceed 1.2 for both Au and Ag. A review of the histograms and probability plots of Au and Ag in each of the Mineral Zones indicated breaks and discontinuities in the distributions where the capping thresholds should be applied. The Au and Ag histograms and probability plots are found in Appendices 3 and 4, respectively.

The capping thresholds selected for the La Manchuria Mineral Zones are shown below, in Table 17.3. Also shown are the summary statistics of the capped composites as well as the number of data capped in each mineral zone and the resulting reduction in the contained metal. In some cases, the capping of a small number of data has a very great effect on the metal content of the mineral zone. This indicates the need for more work to better define the geological controls on the high grade mineralization as well as the need for more drilling to decrease the spacing of the drillholes. At La Manchuria, the nominal drillhole spacing is 25 m, which is greater than was used for detailed resource definition at similar deposits elsewhere. At Mina Martha, for example, drillholes or channel samples spaced 12.5 m apart, or less, vertically and 5 m apart horizontally were required to classify a block as Measured. Further, a drillhole spacing less than or equal to 25 m was required for Indicated Resources.

The upper portion of the La Manchuria deposit has been oxidized by surface weathering which may have resulted in certain amount of supergene enrichment at the base of the oxidized zone. Although this has not been observed at La Manchuria, a comparison of the oxide and hypogene data does show a difference between the mean Gold and Silver composite grades as shown in Tables 17.4 and 17.5. It is recommended that the effect of oxidation on the mineralization at La Manchuria be studied further by PGSA. For the purposes of resource estimation, the Oxide surface was treated as a hard boundary.

Table 17.3 La Manchuria Mineral Zone - Composites - Summary Statistics

							La	Manch	uria - Mi	neral Zo	nes					
Composi	ites (1m)	1	2	5	7	8	10	11	13	15	16	20	25	F1 Fault	Pancho	40
	Mean	1.09	1.08	1.67	2.53	4.23	2.34	1.71	1.41	7.13	6.04	4.78	2.33	0.23	1.76	0.16
	Max	27.36	5.71	26.11	72.59	26.06	9.17	60.20	8.12	107.9	118.5	97.41	7.74	4.06	355.52	21.23
Au (g/t)	Min	0.005	0.037	0.06	0.0156	0.312	0.089	0.006	0.055	0.003	0.02	0.015	0.018	0.001	0.0044	0.0006
Au (g/t)	Std Dev	2.36	1.15	3.43	8.94	6.90	3.16	5.51	2.02	19.58	17.17	16.15	2.47	0.70	16.25	0.58
	CV	2.17	1.07	2.05	3.54	1.63	1.35	3.22	1.43	2.74	2.84	3.37	1.06	2.98	9.21	3.54
	Samples	211	46	64	211	13	18	157	16	70	53	62	13	74	571	8,160
	Mean	153	78	47	186	77	14	50	103	119	60	325	147	12	44	10
	Max	4506	588	1565	14218	388	49	1524	989	3443	735	10411	744	158	5920	2710
Ag (g/t)	Min	1.08	1.8	1.5	0.49	1.4	2.2	0.27	6.4	0.6	0.51	1.27	2	0.01	0.25	0.01
Ag (g/t)	Std Dev	478	145	196	1012	111	12.3	153	240	428	137	1355	212	33	348	49.7
	CV	3.13	1.87	4.16	5.43	1.43	0.85	3.07	2.34	3.60	2.29	4.17	1.45	2.74	7.86	5.01
	Samples	211	46	64	211	13	18	157	16	70	53	62	13	74	571	8,160
	Mean	0.99	0.98	0.97	0.98	0.99	0.91	1.00	0.95	0.99	0.94	1.00	0.92	0.98	0.99	1.00
	Max	1.4	1.35	1.4	1.35	1.2	1.15	1.45	1.4	1.45	1.5	1.4	1	1.45	1.45	1.45
Length (m)	Min	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.55	0.5	0.5	0.5	0.5	0.5	0.5
(-12)	Comps	245	49	79	230	13	18	168	20	71	53	71	13	90	647	15,588
	ns	34	3	15	19	0	0	11	4	1	0	9	0	16	76	7,428

Table 17.4 La Manchuria Mineral Zone – Capped Composites - Summary Statistics

Capped C	omposites						I	La Manch	uria - Mi	neral Zoi	ies					
(11		1	2	5	7	8	10	11	13	15	16	20	25	F1 Fault	Pancho	40
	Mean	1.01	1.08	1.28	1.34	2.99	1.77	1.29	1.41	4.52	3.41	1.90	2.33	0.06	0.53	0.15
	Max	10.0	5.71	5.0	10.0	10.0	5.00	10.0	8.12	30.00	15.0	10.0	7.74	0.20	7.50	4.50
Au_Cap	Min	0.005	0.037	0.06	0.0156	0.312	0.089	0.006	0.055	0.003	0.02	0.015	0.018	0.001	0.0044	0.0006
(g/t)	Std Dev	1.63	1.15	1.28	2.43	3.00	2.09	2.59	2.02	8.74	4.55	3.27	2.47	0.07	1.42	0.36
	CV	1.62	1.07	1.00	1.81	1.00	1.18	2.00	1.43	1.94	1.33	1.72	1.06	1.31	2.69	2.34
	Samples	211	46	64	211	13	18	157	16	70	53	62	13	74	571	8,160
	Mean	70	49	22	94	77	13	35	50	59	10	71	147	4	14	8
	Max	400	200	85	500	388	30	250	150	300	25	300	744	20	150	100
Ag_Cap	Min	1.08	1.8	1.5	0.49	1.4	2.2	0.27	6.4	0.6	0.51	1.27	2	0.01	0.25	0.01
(g/t)	Std Dev	124	67	22.6	149	111	8.3	62.8	50.7	91.7	10.0	101	212	6.2	30.8	14.4
	CV	1.78	1.36	1.05	1.59	1.43	0.64	1.78	1.01	1.56	0.97	1.43	1.45	1.48	2.26	1.84
	Samples	211	46	64	211	13	18	157	16	70	53	62	13	74	571	8,160
Capping	Au (g/t)	10	-	5	10	10	5	10	-	30	15	10	-	0.2	7.5	4.5
Threshold	Ag (g/t)	400	200	85	500	-	30	250	150	300	25	300	-	20	150	100
	Number	1	0	2	10	1	3	8	0	4	3	5	0	13	15	19
Au Data	%	0.5	0.0	3.1	4.7	7.7	16.7	5.1	0.0	5.7	5.7	8.1	0.0	17.6	2.6	0.2
Capped	% Metal Removed	7.8	0.0	24.0	47.9	28.8	22.6	23.7	0.0	36.7	48.0	35.4	0.0	76.7	70.0	7.3
	Number	21	5	2	16	0	3	6	1	4	15	8	0	6	18	86
Ag Data	%	10.0	10.9	3.1	7.6	0.0	16.7	3.8	6.3	5.7	28.3	12.9	0.0	8.1	3.2	1.1
Capped	% Metal Removed	53.8	36.8	55.3	49.3	0.0	19.2	30.8	52.1	55.0	81.6	78.3	0.0	64.8	69.2	21.1

Table 17.5 La Manchuria Mineral Zone – Capped Oxide Composites - Summary Statistics

Oxide	e Zone							La M	anchuria -	Mineral Z	ones					
	sites (1m)	1	2	5	7	8	10	11	13	15	16	20	25	F1 Fault	Pancho	40
	Mean	1.39	1.68	1.20	1.80	0.00	2.24	0.91	1.73	4.82	0.67	0.00	0.00	0.18	0.80	0.23
	Max	10.00	5.71	5.00	10.00	0.00	5.00	10.00	8.12	10.27	1.90	0.00	0.00	0.20	7.50	4.50
Au_Cap	Min	0.0048	0.139	0.06	0.053	0	0.089	0.022	0.121	1.549	0.046	0	0	0.129	0.025	0.001
(g/t)	Std Dev	2.02	1.41	1.62	2.71	0.00	2.30	2.26	2.26	4.75	1.06	0.00	0.00	0.03	1.62	0.42
	CV	1.46	0.84	1.36	1.51	0.00	1.03	2.48	1.30	0.99	1.60	0.00	0.00	0.17	2.04	1.84
	Samples	99	16	24	32	0	13	36	12	3	3	0	0	9	26	2,126
	Mean	92	58	20	81	0	12	31	54	65	4	0	0	11	26	12
	Max	400	200	77	500	0	30	250	150	163	6	0	0	19	150	100
Ag_Cap	Min	1.08	3.07	4.6	2.5	0	2.2	2.3	10.6	8.8	3.5	0	0	3.1	2.2	0.01
(g/t)	Std Dev	135.8	72.7	20.9	140.0	0.0	9.5	53.5	48.3	85.5	1.1	0.0	0.0	6.5	41.6	14.7
	CV	1.47	1.26	1.04	1.73	0.00	0.76	1.75	0.90	1.32	0.24	0.00	0.00	0.58	1.62	1.19
	Samples	99	16	24	32	0	13	36	12	3	3	0	0	9	26	2,126
	Mean	1.00	0.92	0.95	0.97	0.00	0.91	1.00	0.97	1.03	1.00	0.00	0.00	1.03	1.01	1.00
	Max	1.4	1.2	1.3	1.15	0	1.15	1	1.4	1.1	1	0	0	1.2	1.45	1.4
Length (m)	Min	0.5	0.5	0.5	0.5	0	0.5	1	0.7	1	1	0	0	1	0.8	0.5
	Comps	128	16	32	35	0	13	36	16	3	3	0	0	9	26	4,111
	ns	29	0	8	3	0	0	0	4	0	0	0	0	0	0	1,985

Table 17.6 La Manchuria Mineral Zone – Capped Hypogene Composites - Summary Statistics

	gene Zone						I	a Manch	uria - M	lineral Z	lones					
Compo	osites (1m)	1	2	5	7	8	10	11	13	15	16	20	25	F1 Fault	Pancho	40
	Mean	0.67	0.76	1.33	1.26	2.99	0.52	1.41	0.44	4.50	3.58	3.11	2.33	0.04	0.52	0.13
	Max	6.85	3.09	4.06	10.00	10.00	0.60	10.00	0.81	30.00	15.00	25.00	7.74	0.20	7.50	4.50
Au_Cap	Min	0.019	0.037	0.113	0.0156	0.312	0.467	0.0064	0.055	0.003	0.02	0.015	0.018	0.001	0.0044	0.0006
(g/t)	Std Dev	1.08	0.85	1.05	2.37	3.00	0.05	2.67	0.33	8.90	4.63	6.89	2.47	0.06	1.42	0.33
	CV	1.61	1.13	0.79	1.89	1.00	0.10	1.90	0.75	1.98	1.29	2.21	1.06	1.52	2.74	2.60
	Samples	112	30	40	179	13	5	121	4	67	50	62	13	65	545	6,034
	Mean	50	45	22	96	77	14	37	40	61	11	71	147	3	13	6
	Max	400	200	85	500	388	20	250	136	350	25	300	744	20	150	100
Ag_Cap	Min	1.3	1.8	1.5	0.49	1.4	9.6	0.27	6.4	0.6	0.51	1.27	2	0.01	0.25	0.01
(g/t)	Std Dev	108.6	64.5	23.7	150.7	110.6	4.5	65.5	64.1	100.9	10.2	101.0	212.4	5.5	30.1	14.0
	CV	2.19	1.44	1.06	1.57	1.43	0.32	1.79	1.60	1.64	0.95	1.43	1.45	1.72	2.31	2.25
	Samples	112	30	40	179	13	5	121	4	67	50	62	13	65	545	6,034
	Mean	0.98	1.01	0.98	0.98	0.99	0.91	1.00	0.88	0.99	0.94	1.00	0.92	0.97	0.99	1.00
T41:	Max	1.05	1.35	1.4	1.35	1.2	1	1.45	1	1.45	1.5	1.4	1	1.45	1.45	1.45
Length (m)	Min	0.5	0.6	0.5	0.5	0.5	0.55	0.5	0.5	0.55	0.5	0.5	0.5	0.5	0.5	0.5
	Comps	117	33	47	195	13	5	132	4	68	50	71	13	81	621	11,477
	ns	5	3	7	16	0	0	11	0	1	0	9	0	16	76	5,443

17.6 SG

The La Manchuria specific gravity database consists of 135 water immersion density determinations performed during all drilling phases; 25, 5 and 105 in Phases 1, 2 and 3 respectively. The data are summarized below in Table 17.7.

Table 17.7
La Manchuria - Density Determinations – Summary Statistics

			OXID	
		Ox	Trans	Нуро
	Mean SG	2.37	2.42	2.42
RHY	Max SG	2.58	2.61	2.60
KIII	Min SG	2.08	2.19	2.21
	Number	39	19	59
	Mean SG			2.46
DAC	Max SG			2.70
DAC	Min SG			2.22
	Number			18

The mean density values were assigned to the block model by domain as summarized in Table 17.8, below. Where no data were available for a given domain, a value was estimated based on similar domains.

Table 17.8
La Manchuria - Density Values Assigned to Domains

SG	Oxidized	Hypogene
Overburden	1.5*	-
Rhyolite	2.37	2.42
Dacite	2.4*	2.46
Andesite	-	2.46*

^{*}Estimated value

17.7 GRADE ESTIMATION

As discussed in Section 17.5, a small number of high grade data at La Manchuria account for a very large proportion of the metal contained by the deposit. This is not unusual for precious metal deposits and experience has shown that most high grade mineralization is a local phenomenon with very little continuity. As a result, care must be taken to limit the influence of these data when estimating the grade of a deposit.

The inversed-distance-cubed (ID³) interpolation technique was used for grade estimation at La Manchuria because it places a lower relative weight on data that are further from the block being estimated than other techniques like ID² and some types of Kriging. Additionally, a 2 step approach was taken with the very high grade data: uncapped data was used to estimate block grades within a limited distance (7.5 m) of a drillhole and capped data were used for the remainder of the block model to a maximum of 50 m from a drillhole. The search radii are presented in Table 17.9 with all of the other estimation parameters and the capping methodology is discussed in Section 17.5.

Table 17.9
La Manchuria - ID³ Estimation – Search Parameters

Search	Sear	ch Radii (m)		Composi	ites	DH	
Volume	Strike	Dip	Th	Min	Max	Max/DH	Min	Data
1	7.5	7.5	1.5	2	4	-	1	Un-Capped
2	25	25	2.5	3	15	2	2	Capped
3	50	50	5	3	15	2	2	Capped
4	50	50	5	2	15	2	1	Capped

Recognizing that the Au/Ag mineralization at La Manchuria occurs in narrow, steeply dipping veins, fractures and fault zones, a disc-like search ellipsoid was used to select the data used to make each block estimate. The long axes of the search ellipsoid were oriented parallel to the strike and dip directions of the mineral zone, shown in Table 17.10. The short axis (Th) was perpendicular to the long axes, across the zone.

Table 17.10 La Manchuria – Mineral Zone Orientations

M-Zone	Strike	Dip
1	130	80
2	130	80
5	150	85
7	140	80
8	126	90
10	140	80
11	140	80
13	120	80
15	120	90
16	135	80
20	135	85
25	135	77
40	135	80
Pancho	150	40
F1	120	90

87

17.8 RESOURCE CLASSIFICATION

The resource classification system at La Manchuria differentiated between mineralized zones bounded by a constraining wireframe and those that are unconstrained. Mineral Zones 1, 2, 5, 7, 8, 10, 11, 13, 15, 16, 20 & 25 were all modelled, and are therefore constrained, by 3D wireframes. All of the other mineralized drillhole intersections fell into mineral zone 40 and were not constrained. For the purposes of resource classification, mineralization modelled as Pancho Fault or F1 Fault was considered unconstrained since little is known about the geological controls on the mineralization or on its continuity.

Resource blocks in the "constrained" Mineral Zones within 25 m of at least two drillholes were classified as Indicated. Those blocks that did not satisfy the minimum requirement to be classified Indicated but were within 50 m of at least one drillhole were classified Inferred.

All "unconstrained" mineral zone blocks have been classified Inferred.

17.9 MINERAL RESOURCE ESTIMATE

The La Manchuria Mineral Resource estimate above a 0.75 g/t AuEq cut-off is summarized in Table 17.11, below.

Silver accounts for over 20% of the value of the La Manchuria deposit. In order for the silver to be reflected in the selection of the material above a break-even cut-off, gold equivalent was used.

The following economic assumptions were used in calculating the AuEq grade of each block:

Gold Price: \$US 925/oz Gold recovery: 95% Silver Price: \$US 14.50/oz Silver Recovery: 60%

Where:

- 3) Metal Value = Grade * Metal Price * Metallurgical Recovery * 0.032151
- 4) AuEq = (Au Value + Ag Value) / (Au Price * 0.032151)

Using the following operating costs, a breakeven cut-off of 0.75 g/t AuEq was calculated:

Mining Cost: \$1.50 per tonne of "ore"

Process Cost: \$14.00 per tonne G & A Costs: \$5.00 per tonne

The mineral resources presented in this report were prepared by Thomas C. Stubens, P.Eng. Mr. Stubens has 20 years experience as a resource estimator and reviewer and is independent of Patagonia Gold S.A. as defined in NI 43-101. Detailed tables of the La Manchuria Mineral Resource estimate are found in Appendix 6. The mineral resource estimate using un-capped data is found in Appendix 7.

Table 17.11 La Manchuria Mineral Resource Estimate above a 0.75 g/t AuEq Cut-off

	MZONE	OXIDE	Grade	(g/t)	Meta	ıl (Oz)	HYPOGENE	Grade	e (g/t)	Met	al (Oz)		TOTAL	Grade	e (g/t)	Met	al (Oz)
	MIZONE	Tonnes	Au	Ag	Au	Ag	Tonnes	Au	Ag	Au	Ag		Tonnes	Au	Ag	Au	Ag
	1	78,418	1.71	176	4,316	444,545	9,080	1.38	151	403	44,009		87,498	1.68	174	4,719	488,554
	2	10,491	1.55	68	524	23,024	8,106	1.21	70	314	18,282		18,597	1.40	69	839	41,306
	5	15,919	2.43	27	1,242	13,708	4,103	1.22	95	161	12,489		20,022	2.18	41	1,403	26,198
	7	13,292	1.31	129	560	55,014	98,877	2.53	197	8,040	625,903		112,168	2.38	189	8,600	680,917
	8	-	-	-	-	-	9,254	3.69	80	1,097	23,829		9,254	3.69	80	1,097	23,829
	10	4,906	3.37	17	532	2,734	-	1	ı	-	-		4,906	3.37	17	532	2,734
INDICATED	11	10,908	1.64	83	576	29,051	52,834	2.91	55	4,947	93,510		63,743	2.70	60	5,523	122,561
I-V	13	6,026	1.54	104	299	20,226	-	1	ı	-	-		6,026	1.54	104	299	20,226
l Si	15	651	27.70	1,947	580	40,746	31,568	7.74	88	7,851	89,488		32,219	8.14	126	8,431	130,234
	16	959	1.50	139	46	4,289	27,348	3.82	27	3,360	24,020		28,307	3.74	31	3,406	28,309
-	20	-	1	-	-	-	33,984	4.34	216	4,741	236,241		33,984	4.34	216	4,741	236,241
	25	-	1	-	-	-	8,981	2.52	163	726	47,102		8,981	2.52	163	726	47,102
	40	-	-	-	-	-	=	1	-	-	-		-	-	-	-	-
	Pancho	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
	F1	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
	Total	141,570	1.91	139	8,675	633,338	284,136	3.46	133	31,642	1,214,873		425,705	2.95	135	40,317	1,848,211
	MZONE	OXIDE	Grade	e(g/t)		al(Oz)	HYPOGENE	Grad	\ 0 /		al(Oz)		TOTAL	Grade	, ,		tal(Oz)
		Tonnes	Au	Ag	Au	Ag	Tonnes	Au	Ag	Au	Ag		Tonnes	Au	Ag	Au	Ag
			-									_					171,823
	1	37,048	1.19	101	1,417	120,688	43,347	1.06	37	1,473	51,135		80,395	1.12	66	2,891	
	2	5,645	2.25	44	409	7,963	11,088	0.91	58	326	20,686		16,733	1.36	53	734	28,649
	5	5,645 10,837	2.25 2.49	44 26	409 869	7,963 8,983	11,088 14,907	0.91 1.56	58 22	326 745	20,686 10,355		16,733 25,743	1.36 1.95	53	734 1,615	28,649 19,337
	5 7	5,645	2.25	44	409	7,963	11,088 14,907 56,201	0.91 1.56 1.33	58 22 157	326 745 2,406	20,686 10,355 284,272		16,733 25,743 65,755	1.36 1.95 1.34	53 23 162	734 1,615 2,830	28,649 19,337 341,517
	2 5 7 8	5,645 10,837 9,554	2.25 2.49 1.38	44 26 186	409 869 424	7,963 8,983 57,245	11,088 14,907	0.91 1.56	58 22	326 745	20,686 10,355		16,733 25,743 65,755 7,477	1.36 1.95 1.34 1.96	53 23 162 76	734 1,615 2,830 471	28,649 19,337 341,517 18,351
	2 5 7 8 10	5,645 10,837 9,554 - 4,969	2.25 2.49 1.38 - 3.55	26 186 - 21	409 869 424 - 568	7,963 8,983 57,245 - 3,306	11,088 14,907 56,201 7,477	0.91 1.56 1.33 1.96	58 22 157 76	326 745 2,406 471	20,686 10,355 284,272 18,351		16,733 25,743 65,755 7,477 4,969	1.36 1.95 1.34 1.96 3.55	53 23 162 76 21	734 1,615 2,830 471 568	28,649 19,337 341,517 18,351 3,306
KED .	2 5 7 8 10	5,645 10,837 9,554 - 4,969 10,727	2.25 2.49 1.38 - 3.55 1.64	44 26 186 - 21 37	409 869 424 - 568 567	7,963 8,983 57,245 - 3,306 12,674	11,088 14,907 56,201	0.91 1.56 1.33	58 22 157	326 745 2,406 471	20,686 10,355 284,272		16,733 25,743 65,755 7,477 4,969 22,833	1.36 1.95 1.34 1.96 3.55 1.88	53 23 162 76 21 39	734 1,615 2,830 471 568 1,381	28,649 19,337 341,517 18,351 3,306 28,891
RRED	2 5 7 8 10 11	5,645 10,837 9,554 - 4,969 10,727 14,775	2.25 2.49 1.38 - 3.55 1.64 1.34	26 186 - 21 37 50	409 869 424 - 568 567 638	7,963 8,983 57,245 - 3,306 12,674 23,736	11,088 14,907 56,201 7,477 - 12,106	0.91 1.56 1.33 1.96 - 2.09	58 22 157 76 - 42	326 745 2,406 471 - 814	20,686 10,355 284,272 18,351 - 16,217		16,733 25,743 65,755 7,477 4,969 22,833 14,775	1.36 1.95 1.34 1.96 3.55 1.88 1.34	53 23 162 76 21 39 50	734 1,615 2,830 471 568 1,381 638	28,649 19,337 341,517 18,351 3,306 28,891 23,736
FERRED	2 5 7 8 10 11 13	5,645 10,837 9,554 - 4,969 10,727 14,775 1,316	2.25 2.49 1.38 - 3.55 1.64 1.34 14.97	44 26 186 - 21 37 50 170	409 869 424 - 568 567 638 633	7,963 8,983 57,245 - 3,306 12,674 23,736 7,175	11,088 14,907 56,201 7,477 - 12,106 - 14,071	0.91 1.56 1.33 1.96 - 2.09 - 6.55	58 22 157 76 - 42 - 83	326 745 2,406 471 - 814 - 2,964	20,686 10,355 284,272 18,351 - 16,217 - 37,354		16,733 25,743 65,755 7,477 4,969 22,833 14,775 15,386	1.36 1.95 1.34 1.96 3.55 1.88 1.34 7.27	53 23 162 76 21 39 50 90	734 1,615 2,830 471 568 1,381 638 3,597	28,649 19,337 341,517 18,351 3,306 28,891 23,736 44,529
INFERRED	2 5 7 8 10 11 13 15	5,645 10,837 9,554 - 4,969 10,727 14,775	2.25 2.49 1.38 - 3.55 1.64 1.34 14.97 1.57	26 186 - 21 37 50	409 869 424 - 568 567 638	7,963 8,983 57,245 - 3,306 12,674 23,736 7,175 1,222	11,088 14,907 56,201 7,477 - 12,106 - 14,071 25,092	0.91 1.56 1.33 1.96 - 2.09 - 6.55 6.38	58 22 157 76 - 42 - 83 14	326 745 2,406 471 - 814 - 2,964 5,151	20,686 10,355 284,272 18,351 - 16,217 - 37,354 11,136		16,733 25,743 65,755 7,477 4,969 22,833 14,775 15,386 28,028	1.36 1.95 1.34 1.96 3.55 1.88 1.34 7.27 5.88	53 23 162 76 21 39 50 90	734 1,615 2,830 471 568 1,381 638 3,597 5,298	28,649 19,337 341,517 18,351 3,306 28,891 23,736 44,529 12,358
INFERRED	2 5 7 8 10 11 13 15 16 20	5,645 10,837 9,554 - 4,969 10,727 14,775 1,316	2.25 2.49 1.38 - 3.55 1.64 1.34 14.97	44 26 186 - 21 37 50 170	409 869 424 - 568 567 638 633	7,963 8,983 57,245 - 3,306 12,674 23,736 7,175	11,088 14,907 56,201 7,477 - 12,106 - 14,071 25,092 18,333	0.91 1.56 1.33 1.96 - 2.09 - 6.55 6.38 3.00	58 22 157 76 - 42 - 83 14 90	326 745 2,406 471 - 814 - 2,964 5,151 1,767	20,686 10,355 284,272 18,351 - 16,217 - 37,354 11,136 53,145		16,733 25,743 65,755 7,477 4,969 22,833 14,775 15,386 28,028 18,333	1.36 1.95 1.34 1.96 3.55 1.88 1.34 7.27 5.88 3.00	53 23 162 76 21 39 50 90 14	734 1,615 2,830 471 568 1,381 638 3,597 5,298 1,767	28,649 19,337 341,517 18,351 3,306 28,891 23,736 44,529 12,358 53,145
INFERRED	2 5 7 8 10 11 13 15 16 20 25	5,645 10,837 9,554 - 4,969 10,727 14,775 1,316 2,935 -	2.25 2.49 1.38 - 3.55 1.64 1.34 14.97 1.57	44 26 186 - 21 37 50 170 13	409 869 424 - 568 567 638 633 148	7,963 8,983 57,245 - 3,306 12,674 23,736 7,175 1,222	11,088 14,907 56,201 7,477 - 12,106 - 14,071 25,092 18,333 6,198	0.91 1.56 1.33 1.96 - 2.09 - 6.55 6.38 3.00 2.10	58 22 157 76 - 42 - 83 14 90	326 745 2,406 471 - 814 - 2,964 5,151 1,767 418	20,686 10,355 284,272 18,351 - 16,217 - 37,354 11,136 53,145 33,832		16,733 25,743 65,755 7,477 4,969 22,833 14,775 15,386 28,028 18,333 6,198	1.36 1.95 1.34 1.96 3.55 1.88 1.34 7.27 5.88 3.00 2.10	53 23 162 76 21 39 50 90 14 90	734 1,615 2,830 471 568 1,381 638 3,597 5,298 1,767 418	28,649 19,337 341,517 18,351 3,306 28,891 23,736 44,529 12,358 53,145 33,832
INFERRED	2 5 7 8 10 11 13 15 16 20 25 40	5,645 10,837 9,554 - 4,969 10,727 14,775 1,316 2,935 - 380,416	2.25 2.49 1.38 - 3.55 1.64 1.34 14.97 1.57 - 1.21	44 26 186 - 21 37 50 170 13 - - 33	409 869 424 - 568 567 638 633 148 - 14,799	7,963 8,983 57,245 - 3,306 12,674 23,736 7,175 1,222 - 400,036	11,088 14,907 56,201 7,477 - 12,106 - 14,071 25,092 18,333 6,198 547,118	0.91 1.56 1.33 1.96 - 2.09 - 6.55 6.38 3.00 2.10 1.08	58 22 157 76 - 42 - 83 14 90 170 39	326 745 2,406 471 - 814 - 2,964 5,151 1,767 418 19,025	20,686 10,355 284,272 18,351 - 16,217 - 37,354 11,136 53,145 33,832 694,283		16,733 25,743 65,755 7,477 4,969 22,833 14,775 15,386 28,028 18,333 6,198 927,534	1.36 1.95 1.34 1.96 3.55 1.88 1.34 7.27 5.88 3.00 2.10	53 23 162 76 21 39 50 90 14 90 170 37	734 1,615 2,830 471 568 1,381 638 3,597 5,298 1,767 418 33,824	28,649 19,337 341,517 18,351 3,306 28,891 23,736 44,529 12,358 53,145 33,832 1,094,320
INFERRED	2 5 7 8 10 11 13 15 16 20 25 40 Pancho	5,645 10,837 9,554 - 4,969 10,727 14,775 1,316 2,935 - 380,416 17,958	2.25 2.49 1.38 - 3.55 1.64 1.34 14.97 1.57 - 1.21 1.15	44 26 186 - 21 37 50 170 13 - - 33 61	409 869 424 - 568 567 638 633 148 - 14,799 666	7,963 8,983 57,245 - 3,306 12,674 23,736 7,175 1,222 - 400,036 35,456	11,088 14,907 56,201 7,477 - 12,106 - 14,071 25,092 18,333 6,198 547,118 216,903	0.91 1.56 1.33 1.96 - 2.09 - 6.55 6.38 3.00 2.10 1.08 2.24	58 22 157 76 - 42 - 83 14 90 170 39 61	326 745 2,406 471 - 814 - 2,964 5,151 1,767 418 19,025 15,637	20,686 10,355 284,272 18,351 - 16,217 - 37,354 11,136 53,145 33,832 694,283 425,985		16,733 25,743 65,755 7,477 4,969 22,833 14,775 15,386 28,028 18,333 6,198 927,534 234,861	1.36 1.95 1.34 1.96 3.55 1.88 1.34 7.27 5.88 3.00 2.10 1.13 2.16	53 23 162 76 21 39 50 90 14 90 170 37 61	734 1,615 2,830 471 568 1,381 638 3,597 5,298 1,767 418 33,824 16,303	28,649 19,337 341,517 18,351 3,306 28,891 23,736 44,529 12,358 53,145 33,832 1,094,320 461,441
INFERRED	2 5 7 8 10 11 13 15 16 20 25 40	5,645 10,837 9,554 - 4,969 10,727 14,775 1,316 2,935 - 380,416	2.25 2.49 1.38 - 3.55 1.64 1.34 14.97 1.57 - 1.21	44 26 186 - 21 37 50 170 13 - - 33	409 869 424 - 568 567 638 633 148 - 14,799	7,963 8,983 57,245 - 3,306 12,674 23,736 7,175 1,222 - 400,036	11,088 14,907 56,201 7,477 - 12,106 - 14,071 25,092 18,333 6,198 547,118	0.91 1.56 1.33 1.96 - 2.09 - 6.55 6.38 3.00 2.10 1.08	58 22 157 76 - 42 - 83 14 90 170 39	326 745 2,406 471 - 814 - 2,964 5,151 1,767 418 19,025	20,686 10,355 284,272 18,351 - 16,217 - 37,354 11,136 53,145 33,832 694,283		16,733 25,743 65,755 7,477 4,969 22,833 14,775 15,386 28,028 18,333 6,198 927,534	1.36 1.95 1.34 1.96 3.55 1.88 1.34 7.27 5.88 3.00 2.10	53 23 162 76 21 39 50 90 14 90 170 37	734 1,615 2,830 471 568 1,381 638 3,597 5,298 1,767 418 33,824	28,649 19,337 341,517 18,351 3,306 28,891 23,736 44,529 12,358 53,145 33,832 1,094,320

18.0 OTHER RELEVANT DATA AND INFORMATION

There are no other data or information pertaining to this report.

19.0 INTERPRETATIONS AND CONCLUSIONS

The La Manchuria Mineral Resource above a break-even cut-off grade of 0.75 g/t gold equivalent (AuEq) is summarized in Table 19.1.

Table 19.1 La Manchuria - Mineral Resource Summary (above a cut-off of 0.75 AuEq (g/t)

Ind	icated		Grade (g/t	:)	Metal (Oz)				
Domain	Tonnes	Au	Ag	AuEq	Au	Ag	AuEq		
Oxide	141,570	1.91	139.1	3.12	8,675	633,338	14,198		
Hypogene	284,136	3.46	133.0	4.54	31,642	1,214,873	41,486		
Total	425,705	2.95	135.0	4.07	40,317	1,848,211	55,684		
Inf	erred		Grade (g/t	:)	Metal (Oz)				
Domain	Tonnes	Au	Ag	AuEq	Au	Ag	AuEq		
Oxide	496,179	1.33	42.5	1.66	21,138	678,485	26,462		
Hypogene	972,840	1.64	53.0	2.05	51,197	1,656,751	64,220		
Total	1,469,020	1.53	49.4	1.92	72,335	2,335,236	90,682		

The following economic assumptions were used in calculating the AuEq grade of each block:

Gold Price: \$US 925/oz Gold recovery: 95% Silver Price: \$US 14.50/oz Silver Recovery: 60%

Where:

1) Metal Value = Grade * Metal Price * Metallurgical Recovery * 0.032151

2) AuEq = (Au-Value + Ag-Value) / (Au-Price * 0.032151)

The mineral resources in this report were estimated in accordance with the definitions contained in the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) Standards on Mineral Resources and Reserves Definitions and Guidelines that were prepared by the CIM Standing Committee on Reserve Definitions and adopted by the CIM Council on December 11, 2005.

20.0 RECOMMENDATIONS

It is recommended that the following work be carried out to further advance the La Manchuria project:

- 1. There appears to be an abrupt change in lithology in the vicinity of section 5275N with the appearance of an upper Dacite unit. It has been suggested by the site geologists that this is due to a northeast/southwest striking fault. More work is required to determine the attitude and orientation of this fault so that it can be included in the 3D model. There is reason to believe that this fault has an effect on the mineralization as well as the lithology.
- 2. The F1 Fault is reported to be a major through going structure which offsets the bedrock lithologies and may terminate mineralization in the southwest. The structure has not been modelled over the entire length of the project area and where it has been modelled; its location and continuity seem quite erratic. More work is required to confirm the location and attitude of the F1 Fault.
- 3. The effect of oxidation on the grade and continuity of mineralization appears to be poorly understood. Additional work is required.
- 4. Further metallurgical work should include:
 - Oxide and hypogene mineralization should be collected for separate metallurgical testing.
 - Column leach tests should be scheduled for low grade ores being considered for heap leach gold and silver recovery.
 - Leach samples #2 and #13 showed low gold recoveries. Further testing, to determine the cause of the low recoveries, is required before a mine model can be developed.
 - Silver is estimated to represent 25% of the value of the resource. More work is required to determine silver head grades, mineralization and recovery.
 - Geological reports indicate the presence of fine clays and clay generating minerals. The types and amounts of fine clays generated in the milling process will need to be determined for process selection and tailings rheology.
 - Bond work indexes are also required to determine milling equipment sizes and required electrical power, along with tailings rheology and deposition tests for the tailings storage design.
- 5. Define the controls and continuity of mineralization in Pancho Fault.

- 6. Test the potential for mineralization along strike. It appears to be open to the northwest and the southeast.
- 7. PGSA should employ a check laboratory as part of its QA/QC Program. Approximately 5% of the pulps should be sent to a second laboratory to ensure that the primary lab is performing well. The sample lots sent to the check lab should also include standard reference materials in the same proportion as the lots sent to the primary lab.
- 8. The number of gold standards (21) employed in the QA/QC program is excessive and makes the QA/QC process difficult to manage. This is particularly true when some standards are employed less than 10 times and when a number of the standards have certified values which are very similar to one another. It is recommended that the number of standards being used at any one time be reduced to about five spanning a range of possible assay results. One of these standards should have a certified grade that is close to the anticipated 0.75 g/t Au breakeven cut-off for an open pit mining operation.

21.0 SIGNATURES

This report, titled "Technical Report on the Mineral Resources of the La Manchuria Project, Santa Cruz Province, Argentina", dated September 15, 2010, was prepared for Patagonia Gold S.A. by the following authors:

Original Document, signed and sealed by "Thomas C. Stubens"

Thomas C. Stubens, M.A.Sc., P.Eng. Senior Geologist Micon International Limited

Original Document, signed and sealed by "Michael Godard"

Michael Godard, P.Eng. Senior Metallurgist Micon International Limited

REFERENCES

Ashley P.M. (2008), Petrographic Report on Fourteen Drill Core Samples from the Cap Oeste Project, Argentina: Patagonia Gold S.A Internal Report #510

Barrera L. Reinaldo (February 2010), Final Report Part 1, Gold Assays in Gold Ores Prepared for Patagonia Gold, SGS Minerals Services, Santiago Chile

Barrera L. Reinaldo (February 2010), Final Report Cyanide Leaching Test in Bottles with Gold Ores, SGS Minerals Services, Santiago Chile

Cooke, D. and Simmons, S., (2000), Characteristics and Genesis of Epithermal Gold Deposits: Society of Economic Geologists Review, no. 13: 221-224.

Corbett, G.J., (2001), Styles of Epithermal Gold-Silver Mineralization: ProEXPLO 2001 Conference, Lima, Peru, published as CD.

Corbett, G.J., (2007), Comments on Exploration of the Paloma and El Tranquillo Projects Santa Cruz Province, Argentina: Patagonia Gold S.A. Internal Memo

Sanders G., (2000), Regional Geologic Setting of the Gold-Silver Veins of the Deseado Massif, Southern Patagonia, Argentina: Argentina Mining 2000: Exploration, Mine Development and Business Opportunities Conference, Mendoza, Argentina, 60p.

Sillitoe, R.H., (1993), Epithermal Models: Genetic Types, Geometrical Controls and Shallow Features in Kirkham, Sinclair, Thorpe and Duke (eds.), Mineral Deposits Modelling: Geological Association of Canada, Special Paper 40: 403-417.

Sillitoe R.H (2008), Comments on Cap Oeste, Breccia Valentina, La Manchuria, La Paloma and Cerro Vasco Gold-Silver Prospects, Santa Cruz Province, Argentina: Patagonia Gold S.A Internal Memo

Sillitoe R.H (2009), Further Definition of Shoot A, Cap Oeste Gold-Silver Prospect, Santa Cruz, Argentina: Patagonia Gold S.A Internal Memo

Unger N., Langer, K., Torres, S., (2008), Gradient And Pole-Dipole IP/Resistivity And Ground Magnetic Surveys At The Cap Oeste Project, Santa Cruz Province, Argentina: Patagonia Gold S.A. Internal Report QGA-270

White N.C. and Hedenquist J.W. (1990), Epithermal Environments and Styles of Mineralization: Variations and Their Causes, and Guidelines for Exploration: in Hedenquist J.W., White N.C. and Siddeley G., editors, Epithermal Gold Mineralization of the Circum Pacific: Geology, Geochemistry, Origin and Exploration, Journal of Geochemical Exploration, v. 36, p. 445-474

CERTIFICATE OF AUTHOR THOMAS C. STUBENS

I, Thomas C. Stubens, of Vancouver, British Columbia, do hereby certify that as the author of this "Technical Report on the Mineral Resources of the La Manchuria Project, Santa Cruz Province, Argentina", dated September 15, 2010, I hereby make the following statements:

- I am a Senior Geologist with Micon International Limited with a business address at 205-700 West Pender St., Vancouver, British Columbia, V6C 1G8.
- I am a graduate of the Universities of Toronto and British Columbia, (B.A.Sc, 1978 and M.A.Sc., 1989 respectively).
- I am a member in good standing of the Association of Professional Engineers and Geoscientists of British Columbia (License #28367).
- I have read the definition of "qualified person" set out in National Instrument 43-101 (NI 43-101) and certify that, by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "qualified person" for the purpose of NI 43-101.
- My relevant experience with respect to La Manchuria includes 30 years of post-graduate experience, 20 years of which are in the fields of geological modeling and geostatistical resource estimation. I visited the project on January 27 and 28, 2010.
- I am responsible for the preparation of Sections 1 to 15 and 17 to 20 of this technical report titled "Technical Report on the Mineral Resources of the La Manchuria Project, Santa Cruz Province, Argentina", dated September 15, 2010.
- I have no prior involvement with the Property that is the subject of the Technical Report.
- As of the date of this Certificate, to my knowledge, information, and belief, this Technical Report contains
 all scientific and technical information that is required to be disclosed to make the technical report not
 misleading.
- I am independent of the Issuer as defined by Section 1.4 of the Instrument.
- I have read National Instrument 43-101 and the Technical Report has been prepared in compliance with National Instrument 43-101 and Form 43-101F1.

Signed and dated this 15th day of September, 2010 at Vancouver, British Columbia.

Original Document signed and sealed by "Thomas C. Stubens"

Thomas C. Stubens, M.A.Sc., P.Eng. Senior Geologist

CERTIFICATE OF AUTHOR

Michael Godard

As a co-author of portions of this report entitled "TECHNICAL REPORT ON THE MINERAL RESOURCES OF THE LA MANCHURIA PROJECT, SANTA CRUZ PROVINCE, ARGENTINA" dated Sept 15, 2010 I, Michael Godard, do hereby certify that:

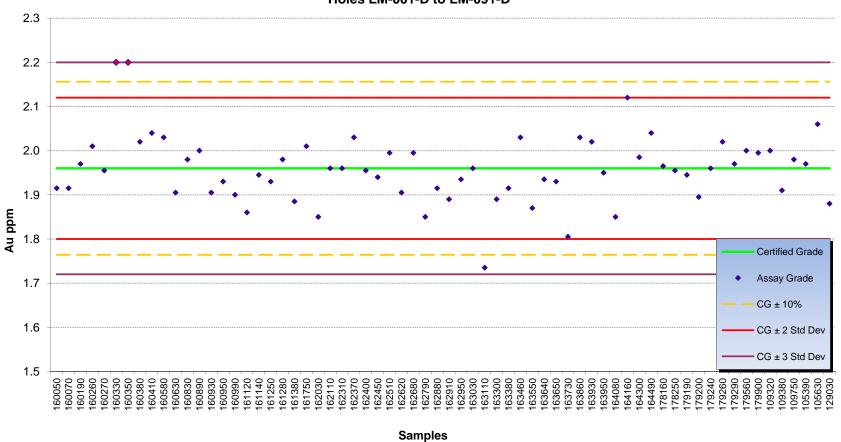
- 1. I am employed by, and carried out this assignment for Micon International Limited, 205 700 West Pender Street, Vancouver, BC, V6C 1G8, Tel: 604-647-6463, email: mgodard@micon-international.com.
- I hold the following academic qualifications:
 Bachelor of Applied Science Degree (Metallurgy) University of British Columbia, 1985
- 3. I am a Professional Engineer registered with the Association of Professional Engineers and Geoscientists of BC; APEGBC, (registration number 33114).
- 4. I do, by reason of education, experience and professional registration, fulfill the requirements of a Qualified Person as defined in NI 43-101. My work experience includes over 25 years of experience in design, commissioning and process engineering within the oil sands and mineral processing and metals fabrication industries.
- 5. I have not visited the La Manchuria properties.
- 6. I am responsible for the preparation of Section 16 of this technical report titled "Technical Report on the Mineral Resources of the La Manchuria Project, Santa Cruz Province, Argentina", dated September 15, 2010.
- 7. I am independent of Patagonia Gold S.A. as defined in Section 1.4 of NI 43-10, other than providing consulting services through Micon.
- 8. I have had no prior involvement with the mineral properties in question.
- 9. I have read NI 43-101 and the portions of this report for which I am responsible have been prepared in compliance with the instrument.
- 10. As of the date of this certificate to the best of my knowledge, information and belief, the technical report contains all scientific and technical information that is required to be disclosed to make this report not misleading.

Signed and dated this 15th day of September, 2010 at Vancouver, British Columbia.

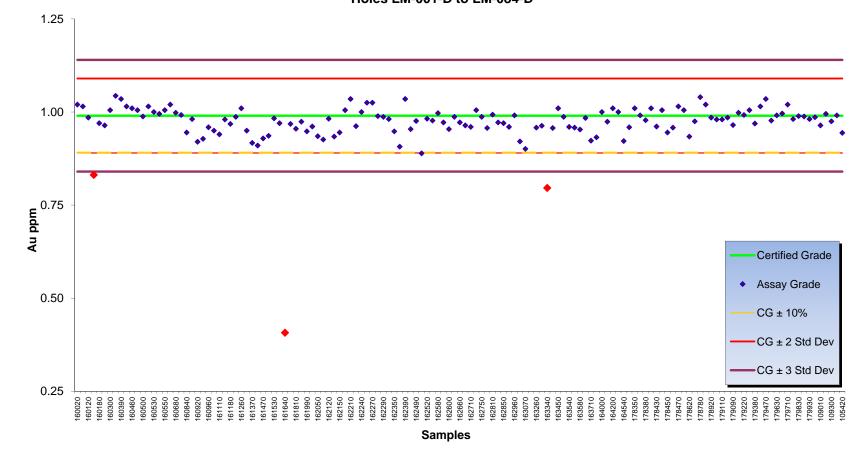
Original Document signed and sealed by "Michael Godard"

Michael Godard, P.Eng. Senior Metallurgist

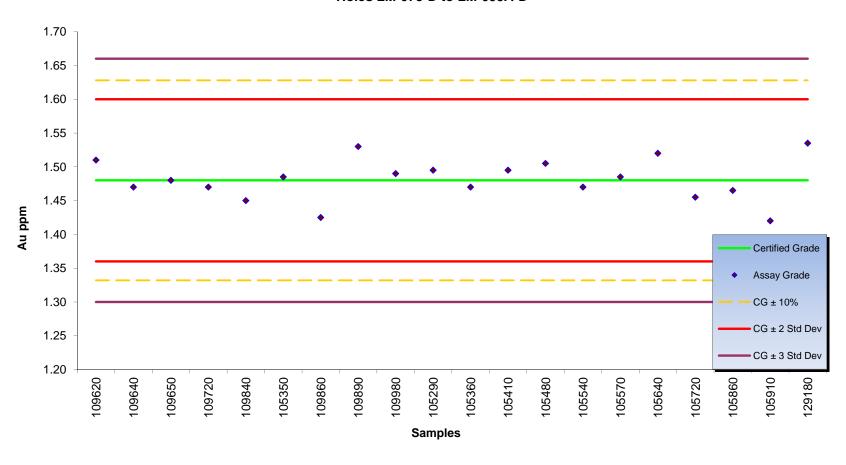
Appendix 1

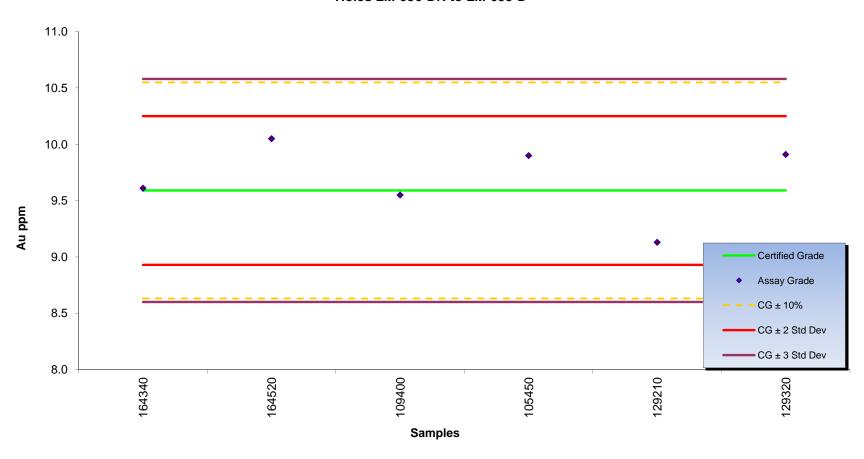

QA/QC Control Charts - Certified Standard Results

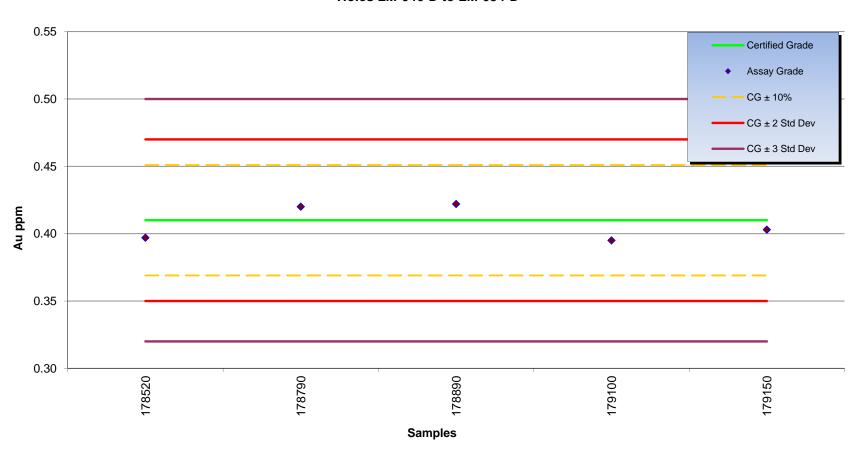
	La	Manchuria	Quality	Control S	Summary	
		Certified	l Laborato	ry Standa	rds	
Standard	Submitted	Analysed	%	FAILED	RATE (%)	Samples Reanalyzed
G301-3	66	66	100%	0	0.0%	0
G302-6	141	141	100%	2	1.4%	19
G305-6	20	20	100%	0	0.0%	0
G305-7	6	6	100%	0	0.0%	0
G306-1	5	5	100%	0	0.0%	0
G307-7	17	17	100%	1	5.9%	11
G397-3	18	18	100%	1	5.6%	6
G398-2	8	8	100%	0	0.0%	0
G399-10	4	4	100%	0	0.0%	0
G399-9	5	5	100%	0	0.0%	0
G900-10	2	2	100%	0	0.0%	0
G900-2	99	99	100%	8	8.1%	76
G900-5	16	16	100%	0	0.0%	0
G900-7	67	67	100%	2	3.0%	19
G901-8	7	7	100%	2	28.6%	11
G903-6	78	78	100%	1	1.3%	7
G995-4	48	48	100%	0	0.0%	0
G997-5	16	16	100%	0	0.0%	0
G997-9	25	25	100%	0	0.0%	0
G999-8	7	7	100%	0	0.0%	0
GLG902-1	32	32	100%	0	0.0%	0
Sub-Total Au	687	687	100%	17	2.5%	149
GBM303-1	1	1	100%	0	0.0%	0
GBM995-8	14	14	100%	0	0.0%	0
GBM997-6	11	11	100%	0	0.0%	0
GBM998-9	7	7	100%	3	42.9%	2
GBM999-3	8	8	100%	0	0.0%	0
Sub-Total Ag	41	41	100%	3	7.3%	2
TOTAL STD	728	728	100%	20	2.7%	151
B1	4	4	100%	0	0.00%	0
B2	5	5	100%	1	20.0%	9
Grey Blank	136	136	100%	2	1.5%	18
TOTAL BLANK	145	145	100%	3	2.1%	27
GRAND TOTAL	873	873	100%	23	2.6%	178

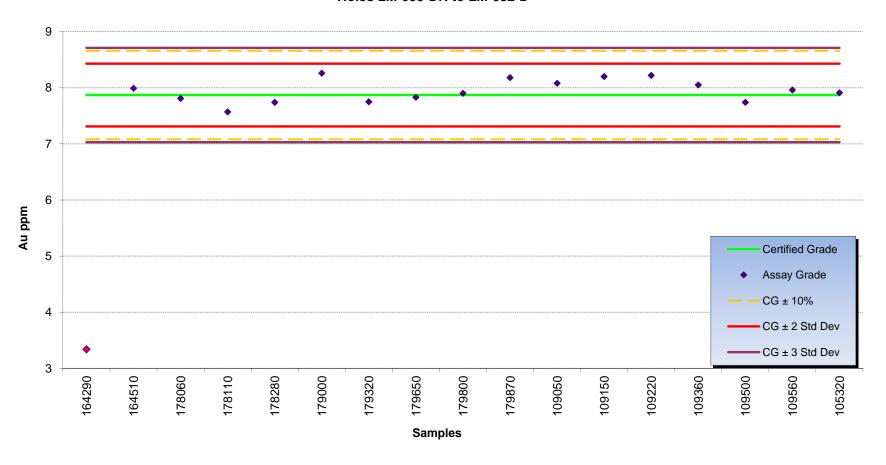

Duplicates												
	Submitted Analysed % FAILED RATE (%) Samples Reanalyzed											
TOTAL	8	8	100%	0	0.00%	0						

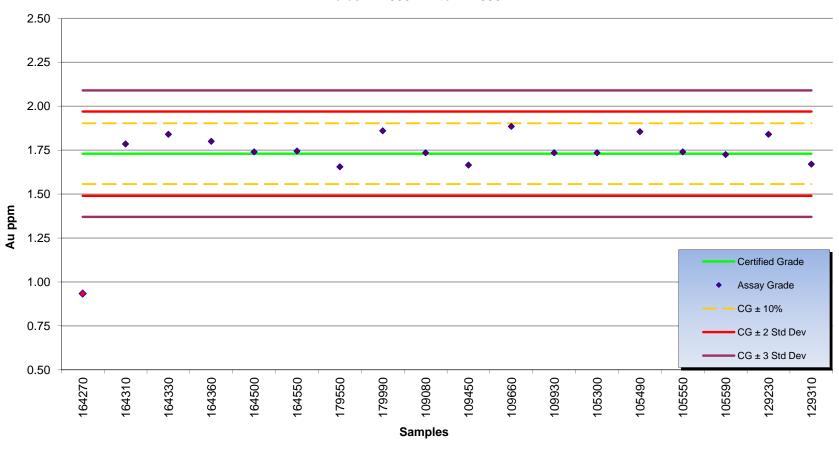
	La M	anchuria C	uality Con	trol Summ	ary	
		Certified L	aboratory S	tandards		
Standard	Au FA (50)	StdDev	CI	Ag FA (50)	StdDev	CI
G301-3	1.96	0.080	0.017	n/a	-	-
G302-6	0.99	0.050	0.011	n/a	-	-
G305-6	1.48	0.060	0.009	n/a	-	-
G305-7	9.59	0.330	0.072	n/a	-	-
G306-1	0.41	0.030	0.005	n/a	-	-
G307-7	7.87	0.280	0.003	n/a	-	-
G397-3	1.73	0.120	0.029	n/a	-	-
G398-2	0.50	0.040	0.009	n/a	-	-
G399-10	13.20	0.880	0.179	n/a	-	-
G399-9	6.27	0.310	0.060	n/a	-	-
G900-10	13.85	0.530	0.118	n/a	-	-
G900-2	1.48	0.060	0.009	n/a	-	-
G900-5	3.21	0.130	0.028	n/a	-	-
G900-7	3.22	0.160	0.034	n/a	-	-
G901-8	47.24	1.550	0.335	n/a	-	-
G903-6	4.13	0.170	0.037	n/a	-	-
G995-4	8.67	0.600	0.142	n/a	-	-
G997-5	7.31	0.330	0.073	n/a	-	-
G997-9	5.16	0.320	0.069	n/a	-	-
G999-8	3.42	0.190	0.038	n/a	-	-
GLG902-1	0.00282	0.002	0.000	n/a	0.002	0.000
GBM303-1	n/a	-	-	1419.6	73.5	0.000
GBM995-8	n/a	-	-	52.0	4.6	0.000
GBM997-6	n/a	-	-	462.7	27.7	0.000
GBM998-9	n/a	-	-	101.9	4.3	0.000
GBM999-3	n/a	-	-	291.2	16.3	0.000
B1	0.06	0.000	0.000		0.000	0.000
B2	0.04	0.000	0.000		0.000	0.000
Grey Blank	0.00282	0.002	0.000	0	0.002	0.000

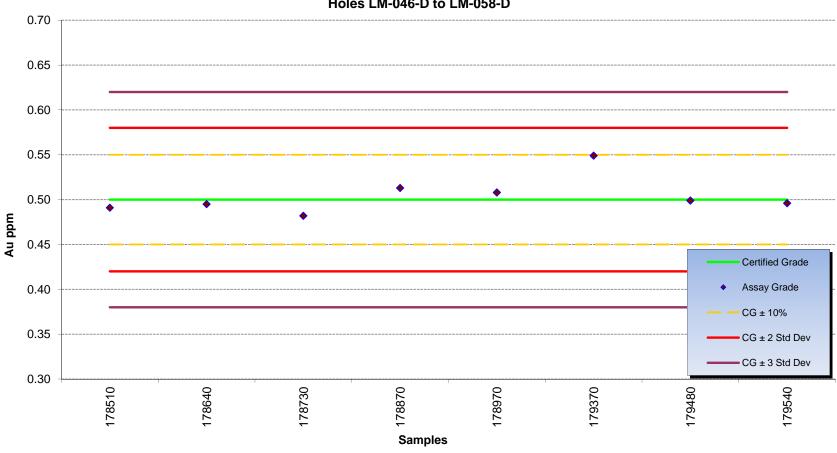

Control Chart for PGSA Certified Reference Standard G301-3 Holes LM-001-D to LM-091-D

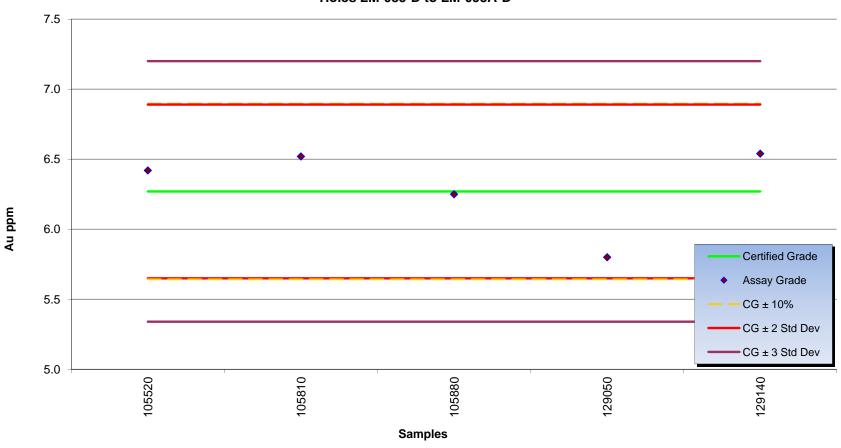

Control Chart for PGSA Certified Reference Standard G302-6 Holes LM-001-D to LM-084-D

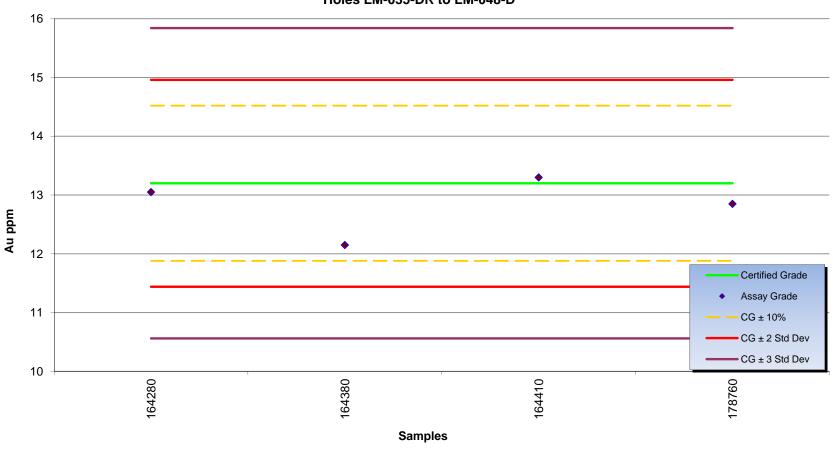

Control Chart for PGSA Certified Reference Standard G305-6 Holes LM-075-D to LM-093A-D


Control Chart for PGSA Certified Reference Standard G305-7 Holes LM-036-DR to LM-095-D

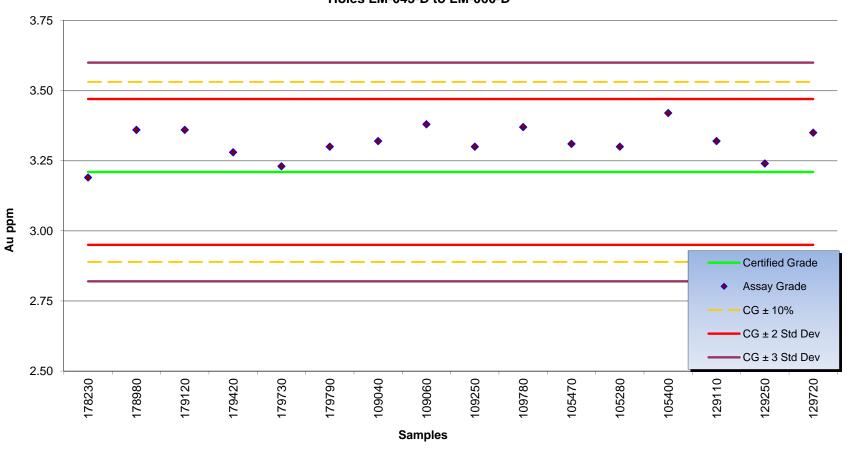

Control Chart for PGSA Certified Reference Standard G306-1 Holes LM-046-D to LM-054-D

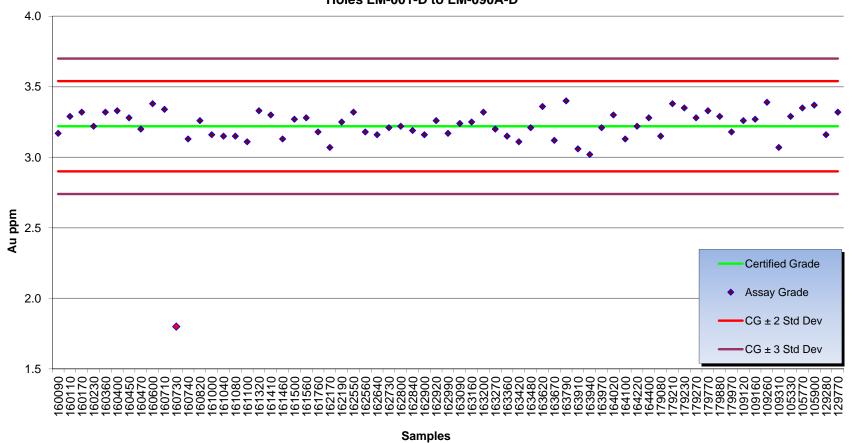

Control Chart for PGSA Certified Reference Standard G307-7 Holes LM-035-DR to LM-082-D

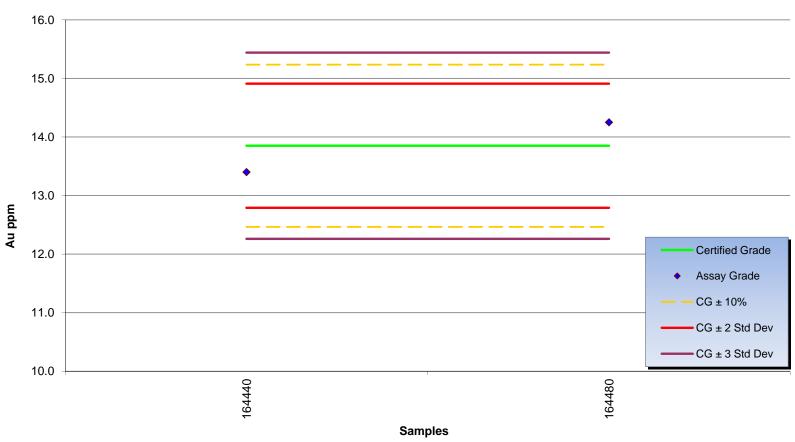

Control Chart for PGSA Certified Reference Standard G397-3 Holes LM-035-DR to LM-095-D

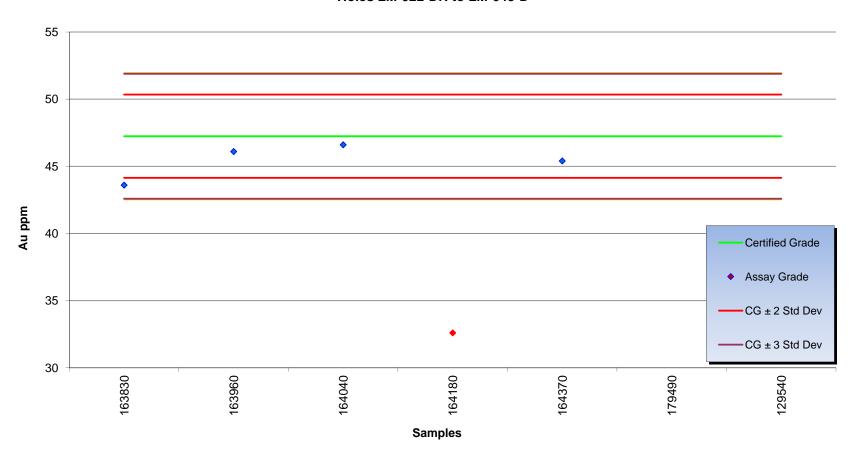

Control Chart for PGSA Certified Reference Standard G398-2 Holes LM-046-D to LM-058-D

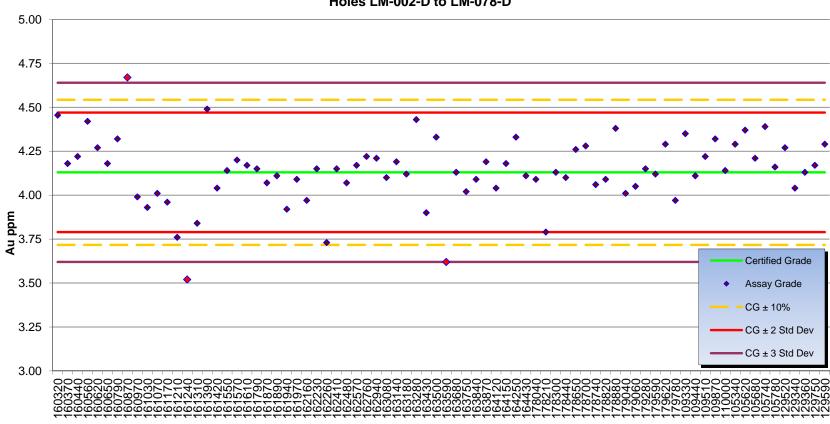
Control Chart for PGSA Certified Reference Standard G399-9 Holes LM-085-D to LM-093A-D

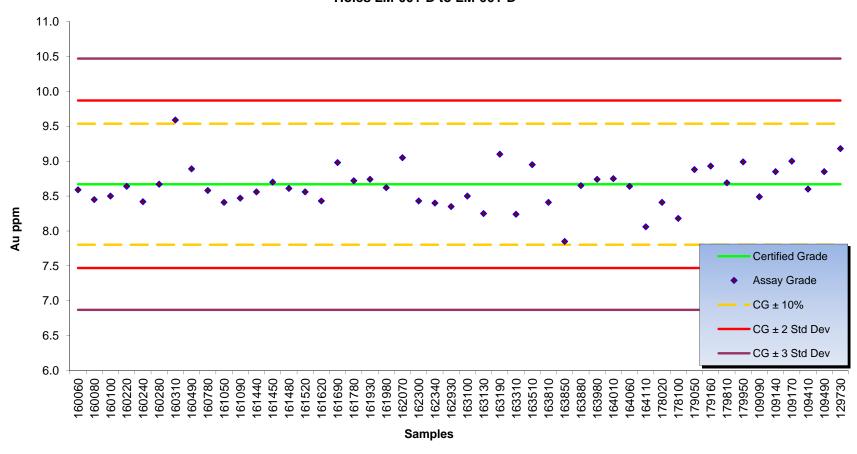

Control Chart for PGSA Certified Reference Standard G399-10 Holes LM-035-DR to LM-048-D

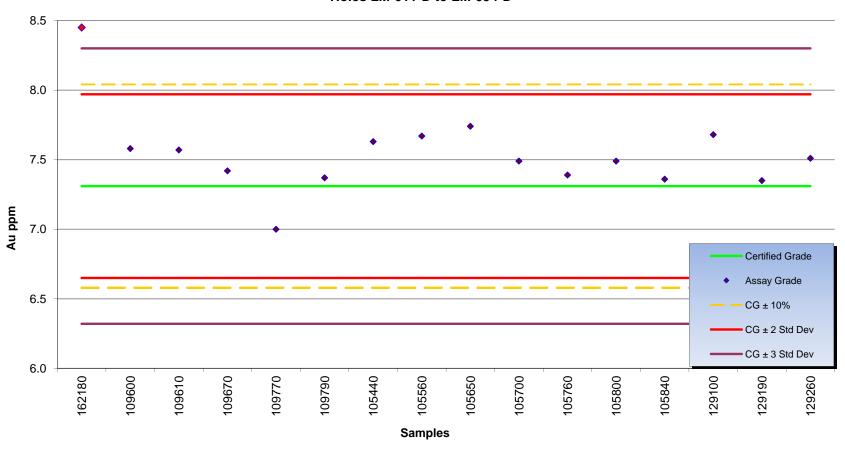

Control Chart for PGSA Certified Reference Standard G900-2 Holes LM-001-D to LM-095-D

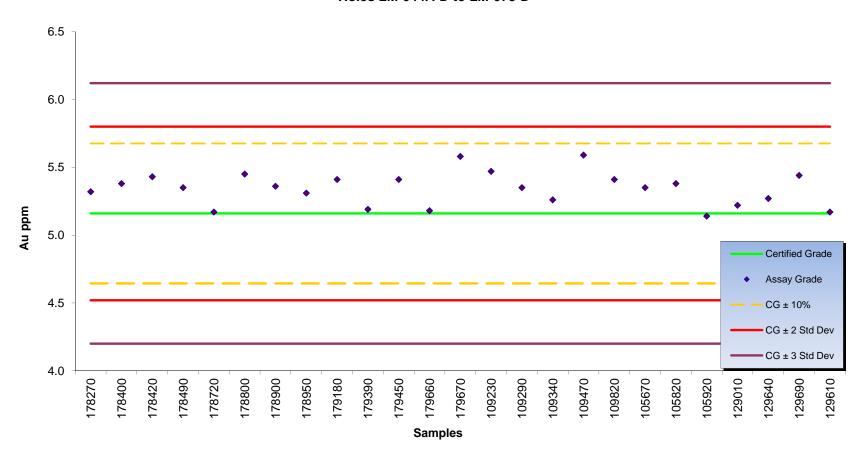

Control Chart for PGSA Certified Reference Standard G900-5 Holes LM-043-D to LM-060-D

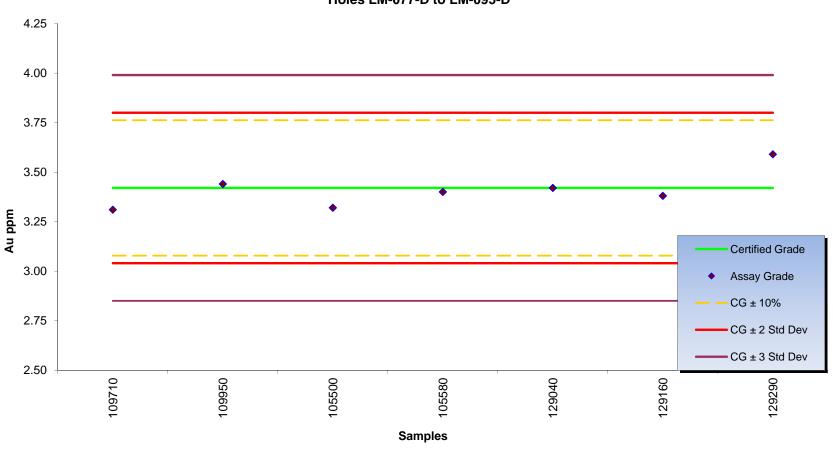

Control Chart for PGSA Certified Reference Standard G900-7 Holes LM-001-D to LM-090A-D

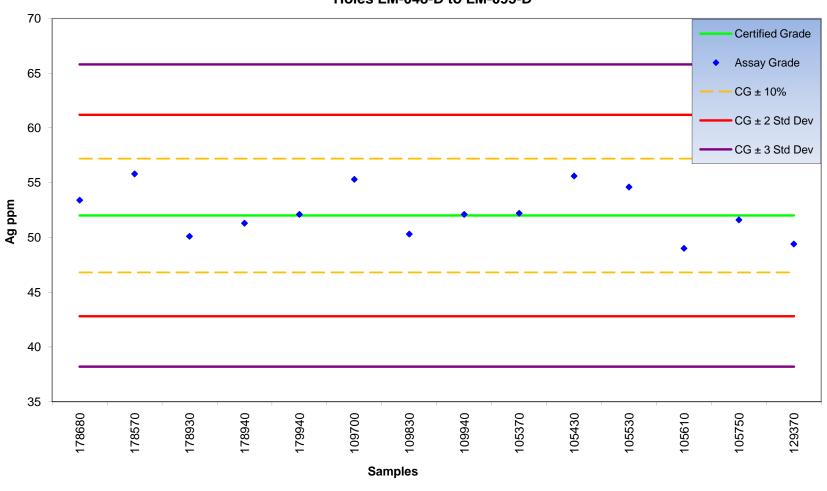

Control Chart for PGSA Certified Reference Standard G900-10 Holes LM-037-DR to LM-038-DR

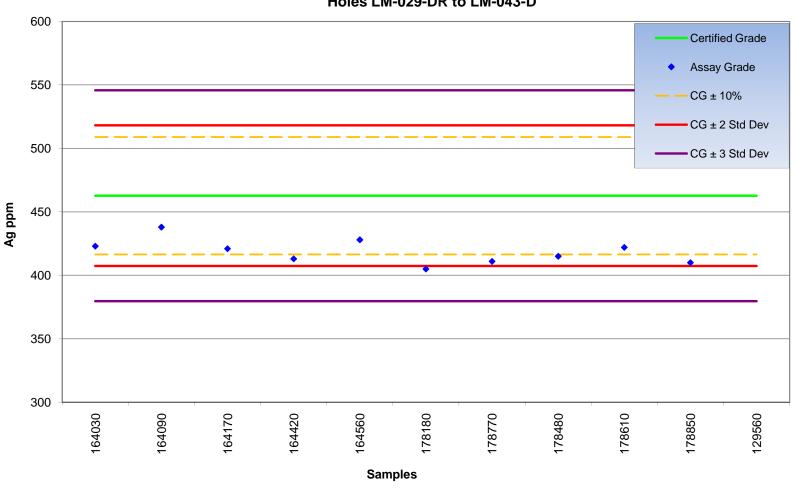

Control Chart for PGSA Certified Reference Standard G901-8 Holes LM-022-DR to LM-043-D

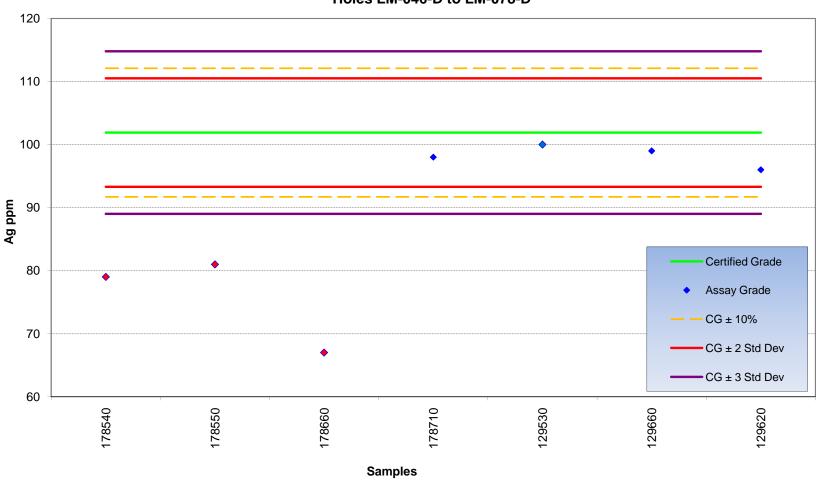

Control Chart for PGSA Certified Reference Standard G903-6 Holes LM-002-D to LM-078-D

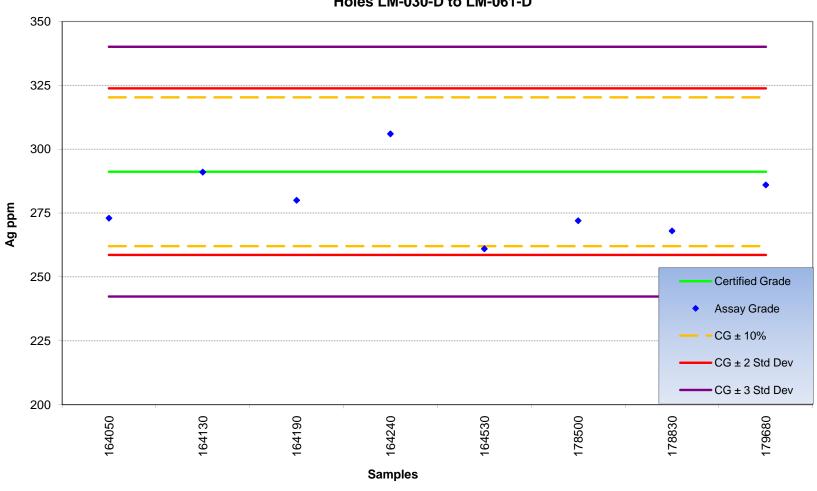

Control Chart for PGSA Certified Reference Standard G995-4 Holes LM-001-D to LM-061-D

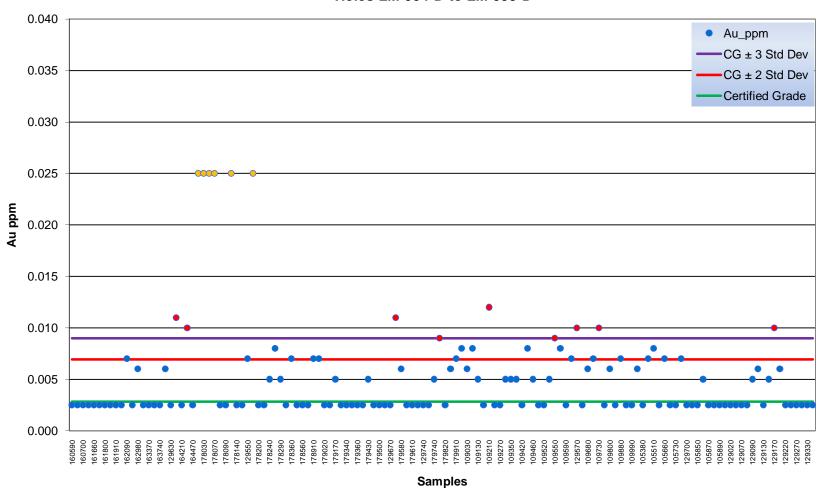

Control Chart for PGSA Certified Reference Standard G997-5 Holes LM-011-D to LM-094-D

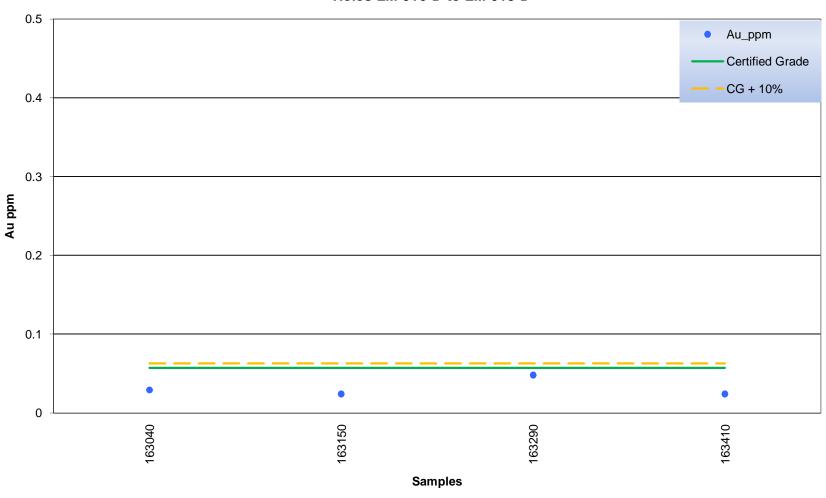

Control Chart for PGSA Certified Reference Standard G997-9 Holes LM-044A-D to LM-078-D

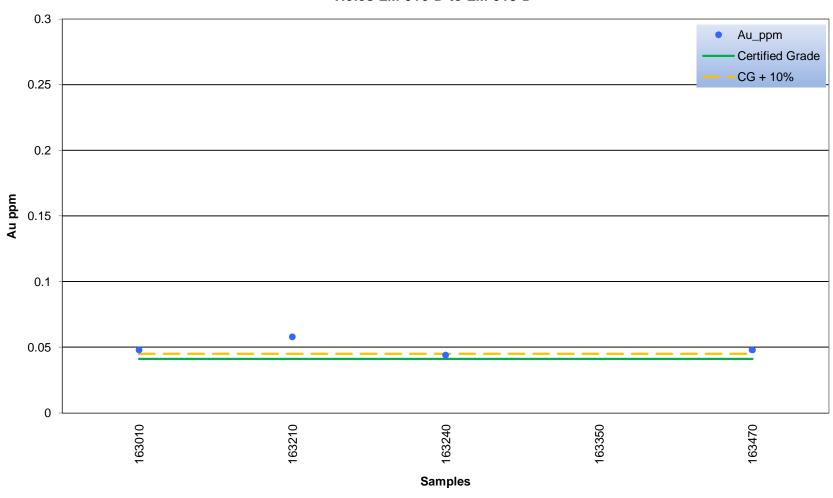

Control Chart for PGSA Certified Reference Standard G999-8 Holes LM-077-D to LM-095-D

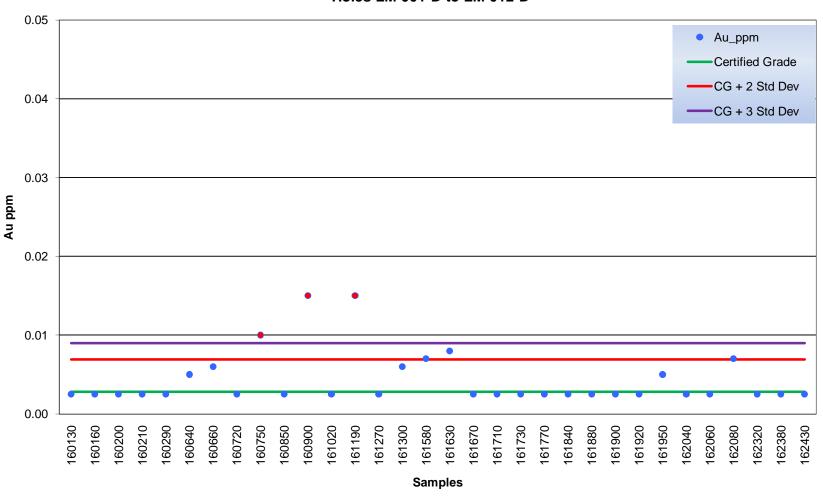

Control Chart for PGSA Certified Reference Standard GBM995-8 Holes LM-048-D to LM-095-D


Control Chart for PGSA Certified Reference Standard GBM997-6 Holes LM-029-DR to LM-043-D


Control Chart for PGSA Certified Reference Standard GBM998-9 Holes LM-046-D to LM-078-D


Control Chart for PGSA Certified Reference Standard GBM999-3 Holes LM-030-D to LM-061-D


Control Chart for PGSA Certified Reference Blank Grey Blank Holes LM-004-D to LM-095-D


Control Chart for PGSA Certified Reference Blank B1 Holes LM-016-D to LM-018-D

Control Chart for PGSA Certified Reference Blank B2 Holes LM-016-D to LM-018-D

Control Chart for PGSA Certified Reference Standard GLG902-1 Holes LM-001-D to LM-012-D

Appendix 2

QA/QC Control Charts - Reanalyzed Samples

PATAGONIA GOLD S.A.

La Manchuria

STD Check Assay Quality Control Report

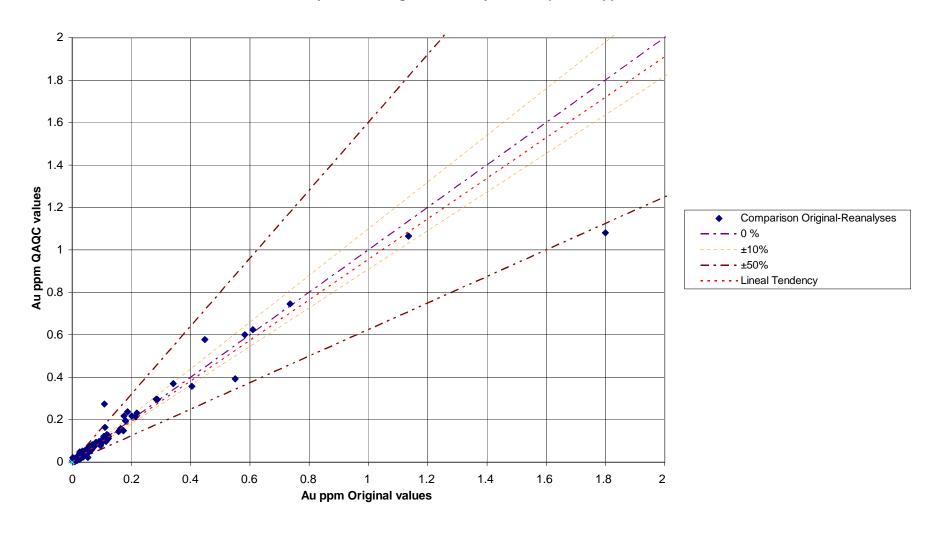
Geochemical Assays of Patagonia Gold

Gustavo Almeira June 2010

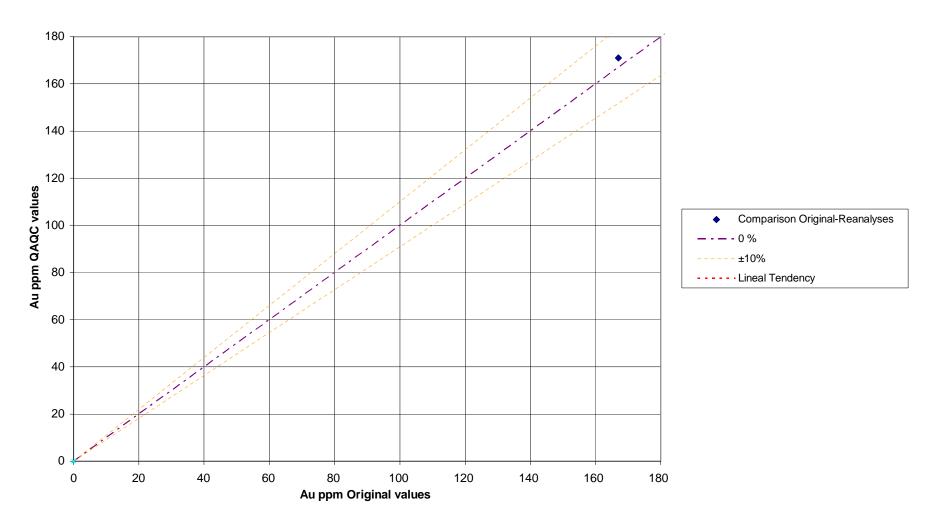
GUSTAVO ALMEIRA – QUALITY CONTROL REPORT

SUMMARY:

La Manchuria Failed Quality Control Results				
Standards	Failed	Samples Reanalyzed		
G302-6	2	19		
G307-7	1	11		
G397-3	1	6		
G900-2	8	76		
G900-7	2	19		
G901-8	2	11		
G903-6	1	7		
GBM998-9	3	2		
Blank	Failed	Samples Reanalyzed		
Blank B2	Failed	Samples Reanalyzed 9		
		•		
B2	1	9		
B2 Grey Blank	1 2	9		
B2 Grey Blank Duplicates	1 2 Failed	9 18 Samples Reanalyzed		
B2 Grey Blank Duplicates DUP	1 2 Failed 0	9 18 Samples Reanalyzed 0		
B2 Grey Blank Duplicates DUP Totals	1 2 Failed 0 Failed	9 18 Samples Reanalyzed 0 Samples Reanalyzed		
B2 Grey Blank Duplicates DUP Totals Total STD	1 2 Failed 0 Failed 20	9 18 Samples Reanalyzed 0 Samples Reanalyzed 151		

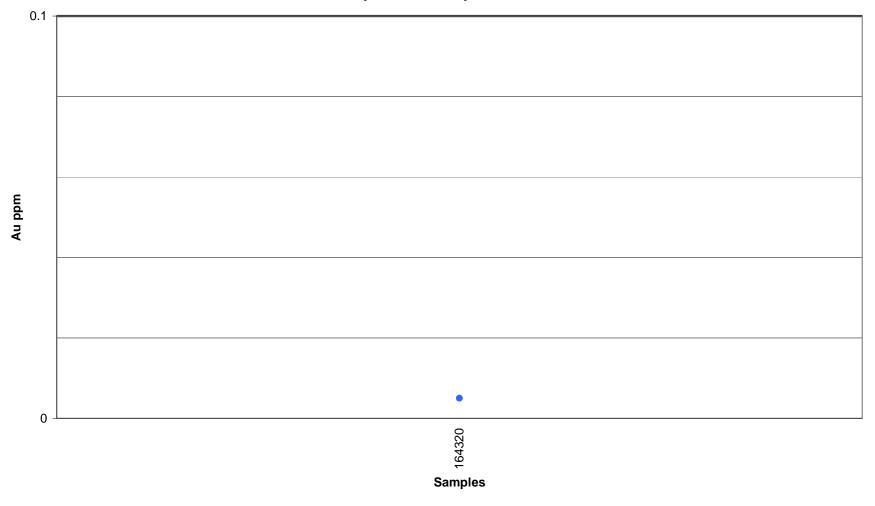

Re-analizadas en total 178 muestras en total

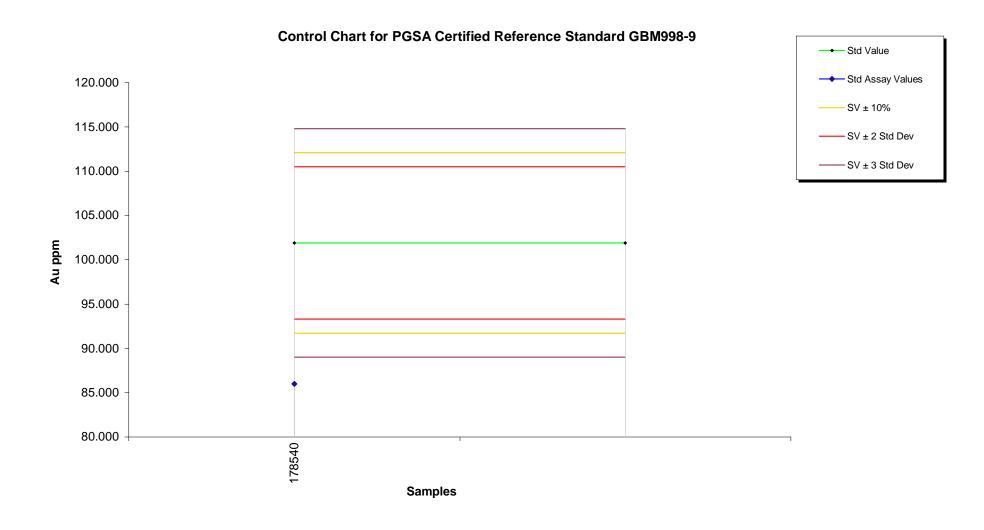
- 171 muestras y 7 estándares
- 6 estándares certificado para Au analizados por Au AAS y 1 estándar certificado para Ag analizado por Ag gravimetría
- 170 muestras analizadas por Au AAS y 1 muestra analizada por Ag gravimetría

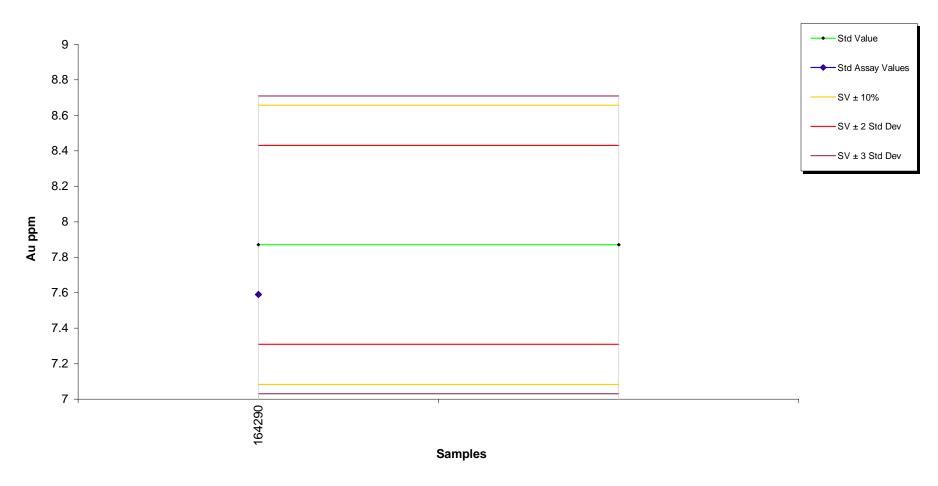

Failed STD:

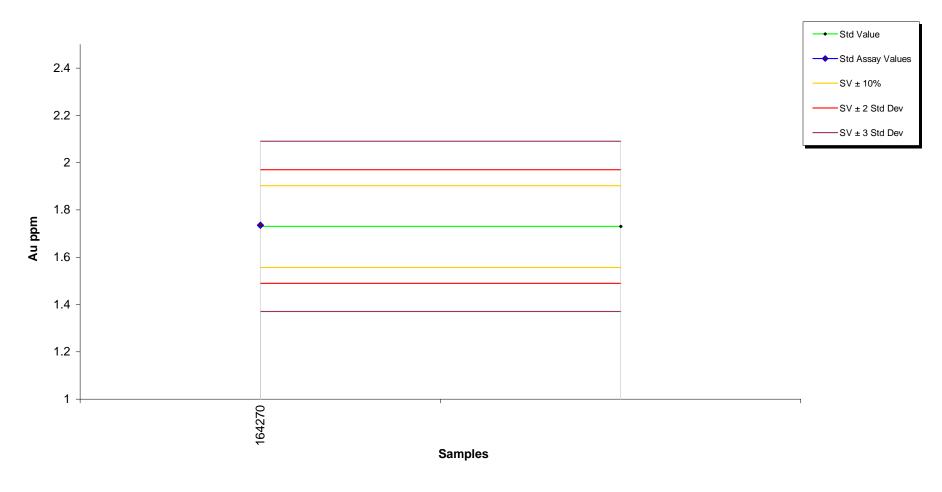
La Manchuria FAILED STD					
Hole	Sample STD	STD Code	Au Results	Au Expected value	
LM-016-D	163170	G302-6	NSS	0.99	
LM-017-D	163330	G900-2	NSS	1.48	
LM-005-D	160730	G900-7	1.800	3.22	
LM-017-D	163340	G302-6	0.796	0.99	
LM-016-D	163120	G900-2	1.115	1.48	
LM-018-D	163440	G900-2	1.210	1.48	
LM-020-D	163600	G900-2	1.115	1.48	
LM-007-D	161240	G903-6	3.520	4.13	
LM-017-D	163350	B2	NSS	0.04	
LM-021-DR	163720	G900-2	1.160	1.48	
LM-022-DR	163770	G900-2	1.195	1.48	
LM-032-DR	164180	G901-8	32.600	47.24	
LM-030-DR	164070	Grey Blank	0.011	0.00	
LM-035-DR	164290	G307-7	3.340	7.87	
LM-035-DR	164270	G397-3	0.934	1.73	
LM-036-DR	164350	G900-2	2.010	1.48	
LM-035-DR	164320	Grey Blank	0.010	0.00	
LM-037-DR	164450	G900-2	1.295	1.48	
LM-046-D	178540	GBM998-9	79.00	101.90	
LM-046-D	178550	GBM998-9	81.00	101.90	
LM-047-D	178660	GBM998-9	67.00	101.90	
LM-057-D	179490	G901-8	>10.0	47.24	

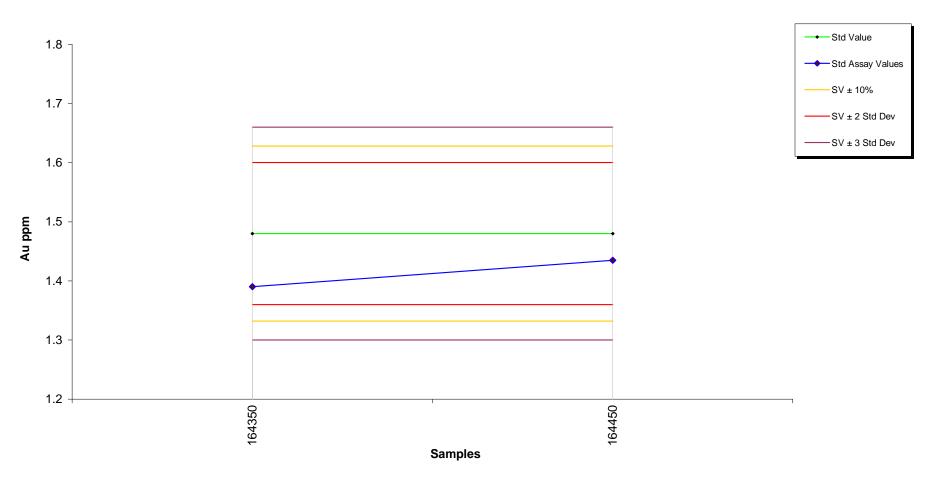
Quality control Original-Re analyses Comparison-ppm Au

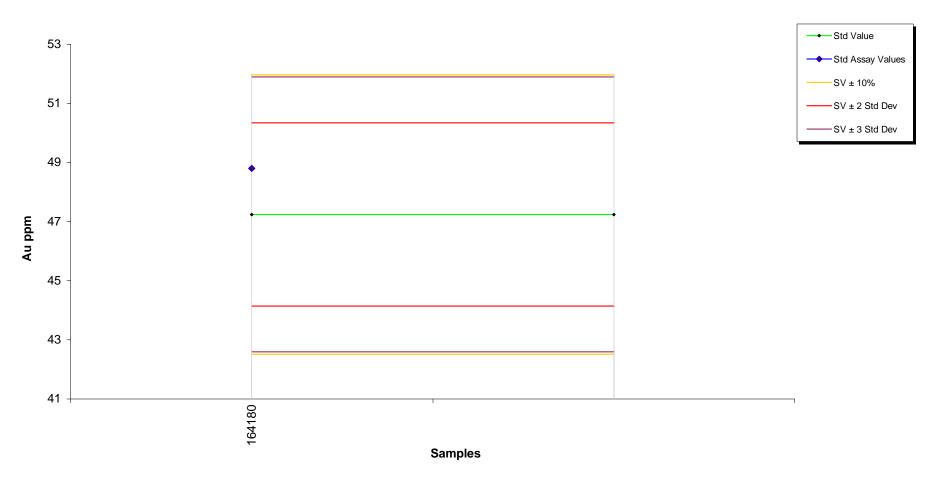



Quality control Original-Re analyses Comparison-ppm Au


Resultados de los estándares que acompañaron a los rechequeos.




Control Chart for PGSA Certified Reference Standard G307-7


Control Chart for PGSA Certified Reference Standard G397-3

Control Chart for PGSA Certified Reference Standard G900-2

Control Chart for PGSA Certified Reference Standard G901-8

Resultados completos:

	_	-				
Hole	Sample	New Sample	Au ppm original	Au ppm Check	Ag ppm original	Ag ppm Check
LM-005-D	160726	160726	0.095	0.085	9	
LM-005-D	160727	160727	0.022	0.023	10.9	
LM-005-D	160728	160728	0.007	0.017	11.1	
LM-005-D	160729	160729	0.0025	0.021	7.4	
LM-005-D	160731	160731	0.059	0.056	11	
LM-005-D	160732	160732	0.054	0.057	8.7	
LM-005-D	160733	160733	0.095	0.078	6.9	
LM-005-D	160734	160734	0.052	0.044	5.9	
LM-005-D	160735	160735	0.023	0.035	8.2	
LM-007-D	161235	161235	0.043	0.04	1.9	
LM-007-D	161236	161236	0.022	0.023	0.6	
LM-007-D	161237	161237	0.063	0.075	8.1	
LM-007-D	161238	161238	2.76	3.02	1060	
LM-007-D	161239	161239	0.105	0.106	5.4	
LM-007-D	161241	161241	0.173	0.148	2.5	
LM-007-D	161242	161242	1.8	1.08	8.2	
LM-013-D	162635	162635	0.045	0.046	2.6	
LM-013-D	162636	162636	0.121	0.12	2.5	
LM-013-D	162637	162637	0.341	0.37	8.2	
LM-013-D	162638	162638	0.214	0.215	25.2	
LM-013-D	162639	162639	0.283	0.297	2.3	
LM-013-D	162641	162641	0.107	0.109	2.3	
LM-013-D	162642	162642	0.074	0.074	5.3	
LM-013-D	162643	162643	0.107	0.122	6.8	
LM-013-D	162644	162644	0.061	0.075	6.6	
LM-013-D	162645	162645	0.736	0.746	126	
LM-016-D	163115	163115	0.023	0.019	1.8	
LM-016-D	163116	163116	0.025	0.024	2	
LM-016-D	163117	163117	0.036	0.03	2.5	
LM-016-D	163118	163118	0.04	0.03	7.9	
LM-016-D	163119	163119	0.038	0.042	3	
LM-016-D	163121	163121	0.404	0.357	16.1	
LM-016-D	163122	163122	0.013	0.016	1.5	
LM-016-D	163165	163165	0.025	0.025	1.3	
LM-016-D	163166	163166	0.018	0.011	1.3	
LM-016-D	163167	163167	0.016	0.013	1.3	
LM-016-D	163168	163168	0.012	0.016	0.9	
LM-016-D	163169	163169	0.017	0.009	1	
LM-016-D	163171	163171	0.015	0.009	0.25	
LM-016-D	163172	163172	0.009	0.0025	0.8	
LM-016-D	163173	163173	0.006	0.0025	0.25	
LM-016-D	163174	163174	0.014	0.013	0.8	

Hole	Sample	New Sample	Au ppm original	Au ppm Check	Ag ppm original	Ag ppm Check
LM-016-D	163175	163175	0.007	0.006	1.4	011
LM-017-D	163325	163325	0.045	0.045	2.8	
LM-017-D	163326	163326	1.135	1.065	16.6	
LM-017-D	163327	163327	0.163	0.158	11.2	
LM-017-D	163328	163328	0.057	0.058	4.2	
LM-017-D	163329	163329	0.043	0.041	3.2	
LM-017-D	163331	163331	0.034	0.031	2.8	
LM-017-D	163332	163332	0.055	0.054	2.5	
LM-017-D	163333	163333	0.059	0.059	3.7	
LM-017-D	163334	163334	0.062	0.063	1.9	
LM-017-D	163335	163335	0.107	0.114	2.7	
LM-017-D	163336	163336	0.117	0.13	8.9	
LM-017-D	163337	163337	0.1	0.106	3.9	
LM-017-D	163338	163338	0.074	0.085	5.7	
LM-017-D	163339	163339	0.058	0.058	3	
LM-017-D	163341	163341	0.201	0.218	3.2	
LM-017-D	163342	163342	0.068	0.071	1.2	
LM-017-D	163343	163343	0.065	0.067	1.8	
LM-017-D	163344	163344	0.218	0.232	2.1	
LM-017-D	163345	163345	0.582	0.6	1.6	
LM-017-D	163346	163346	0.18	0.195	9.3	
LM-017-D	163347	163347	0.101	0.095	1.4	
LM-017-D	163348	163348	0.175	0.218	17.1	
LM-017-D	163349	163349	0.122	0.111	6.5	
LM-017-D	163351	163351	0.447	0.577	5.8	
LM-017-D	163352	163352	0.104	0.098	2.9	
LM-017-D	163353	163353	0.018	0.015	0.9	
LM-017-D	163354	163354	0.026	0.025	1.1	
LM-017-D	163355	163355	0.037	0.024	1	
LM-018-D	163435	163435	0.048	0.053	1.1	
LM-018-D	163436	163436	0.058	0.058	0.9	
LM-018-D	163437	163437	0.187	0.237	115	
LM-018-D	163438	163438	0.057	0.066	1.7	
LM-018-D	163439	163439	0.031	0.031	1.4	
LM-018-D	163441	163441	0.034	0.038	1.7	
LM-018-D	163442	163442	0.114	0.098	3	
LM-018-D	163443	163443	0.12	0.127	2	
LM-020-D	163595	163595	0.019	0.021	1.6	
LM-020-D	163596	163596	0.012	0.011	1	
LM-020-D	163597	163597	0.0025	0.006	1	
LM-020-D	163598	163598	0.0025	0.007	0.6	
LM-020-D	163599	163599	0.007	0.008	0.7	

Hole	Sample	New Sample	Au ppm original	Au ppm Check	Ag ppm original	Ag ppm Check
LM-020-D	163601	163601	0.019	0.015	1.5	011
LM-020-D	163602	163602	0.007	0.007	1.4	
LM-020-D	163603	163603	0.014	0.019	2.6	
LM-020-D	163604	163604	0.011	0.014	2	
LM-020-D	163605	163605	0.01	0.016	1.8	
LM-021-DR	163715	163715	0.058	0.07	1.1	
LM-021-DR	163716	163716	0.067	0.067	2.6	
LM-021-DR	163717	163717	0.048	0.056	1.8	
LM-021-DR	163718	163718	0.045	0.052	1.1	
LM-021-DR	163719	163719	0.044	0.055	4.5	
LM-021-DR	163721	163721	0.057	0.059	1.3	
LM-021-DR	163722	163722	0.065	0.066	1	
LM-021-DR	163723	163723	0.03	0.038	0.8	
LM-021-DR	163724	163724	0.031	0.032	0.7	
LM-021-DR	163725	163725	0.03	0.03	0.6	
LM-022-DR	163765	163765	0.023	0.023	3.3	
LM-022-DR	163766	163766	0.059	0.051	11.1	
LM-022-DR	163767	163767	0.156	0.144	37.9	
LM-022-DR	163768	163768	0.08	0.093	3	
LM-022-DR	163769	163769	0.023	0.026	1.7	
LM-022-DR	163771	163771	0.016	0.026	2.1	
LM-022-DR	163772	163772	0.037	0.042	5.7	
LM-022-DR	163773	163773	0.034	0.042	3.1	
LM-022-DR	163774	163774	0.068	0.082	8.4	
LM-022-DR	163775	163775	0.066	0.059	6.9	
LM-030-DR	164065	164065	0.028	0.022	3.7	
LM-030-DR	164066	164066	0.053	0.022	1.9	
LM-030-DR	164067	164067	0.036	0.049	2.2	
LM-030-DR	164068	164068	0.047	0.036	1.7	
LM-030-DR	164069	164069	0.035	0.052	25.3	
LM-030-DR	164071	164071	0.031	0.026	9	
LM-030-DR	164072	164072	0.026	0.022	3.2	
LM-032-DR	164168	164168	5.65	5.38	765	
LM-032-DR	164169	164169	0.55	0.392	156	
LM-032-DR	164173	164173	0.61	0.625	278	
LM-032-DR	164178	164178	0.025	0.033	12	
LM-032-DR	164179	164179	0.025	0.04	12	
LM-032-DR	164181	164181	0.025	0.028	6	
LM-032-DR	164182	164182	0.025	0.048	5	
LM-032-DR	164185	164185	0.06	0.072	9	
LM-032-DR	164189	164189	0.025	0.013	5	
LM-032-DR	164192	164192	0.025	0.016	6	

Hole	Sample	New Sample	Au ppm original	Au ppm Check	Ag ppm original	Ag ppm Check
LM-035-DR	164281	164281	0.02	0.023	0.25	011
LM-035-DR	164282	164282	0.041	0.036	3.2	
LM-035-DR	164283	164283	0.016	0.019	0.9	
LM-035-DR	164284	164284	0.012	0.013	1.1	
LM-035-DR	164285	164285	0.064	0.065	8	
LM-035-DR	164291	164291	0.008	0.01	0.7	
LM-035-DR	164292	164292	0.0025	0.007	0.5	
LM-035-DR	164293	164293	0.005	0.009	0.7	
LM-035-DR	164294	164294	0.005	0.007	1.1	
LM-035-DR	164295	164295	0.006	0.007	1.4	
LM-035-DR	164261	164261	0.008	0.008	0.25	
LM-035-DR	164262	164262	0.014	0.017	0.25	
LM-035-DR	164263	164263	0.012	0.012	0.9	
LM-035-DR	164264	164264	0.015	0.014	0.25	
LM-035-DR	164265	164265	0.006	0.01	0.6	
LM-036-DR	164343	164343	0.013	0.014	0.6	
LM-036-DR	164345	164345	0.027	0.033	4.5	
LM-036-DR	164346	164346	0.02	0.018	0.9	
LM-036-DR	164348	164348	0.025	0.042	3.3	
LM-036-DR	164349	164349	0.012	0.011	0.25	
LM-036-DR	164351	164351	0.04	0.03	0.25	
LM-036-DR	164352	164352	0.033	0.034	0.7	
LM-036-DR	164353	164353	0.054	0.061	1	
LM-036-DR	164354	164354	0.011	0.01	0.25	
LM-036-DR	164355	164355	0.015	0.017	0.6	
LM-035-DR	164315	164315	0.122	0.122	46.2	
LM-035-DR	164316	164316	0.008	0.009	1.8	
LM-035-DR	164317	164317	0.007	0.007	1.5	
LM-035-DR	164318	164318	0.011	0.012	2.1	
LM-035-DR	164319	164319	0.109	0.274	4.9	
LM-035-DR	164321	164321	0.007	0.011	1.4	
LM-035-DR	164322	164322	0.111	0.164	2.2	
LM-035-DR	164323	164323	0.011	0.012	2.1	
LM-035-DR	164324	164324	0.007	0.01	1.4	
LM-035-DR	164325	164325	0.019	0.015	1.5	
LM-037-DR	164438	164438	0.09	0.097	0.8	
LM-037-DR	164442	164442	0.287	0.295	1.3	
LM-037-DR	164445	164445	0.037	0.037	1.5	
LM-037-DR	164446	164446	0.021	0.021	1.6	
LM-037-DR	164447	164447	0.021	0.02	1	
LM-037-DR	164448	164448	0.027	0.024	0.8	
LM-037-DR	164449	164449	0.022	0.018	2.3	

Hole	Sample	New Sample	Au ppm original	Au ppm Check	Ag ppm original	Ag ppm Check
LM-037-DR	164451	164451	0.026	0.023	1.1	
LM-037-DR	164452	164452	0.022	0.02	0.7	
LM-046-D	178527	178527	0.331		167	171

Appendix 3

QA/QC Control Charts - Duplicate Samples

PATAGONIA GOLD S.A.

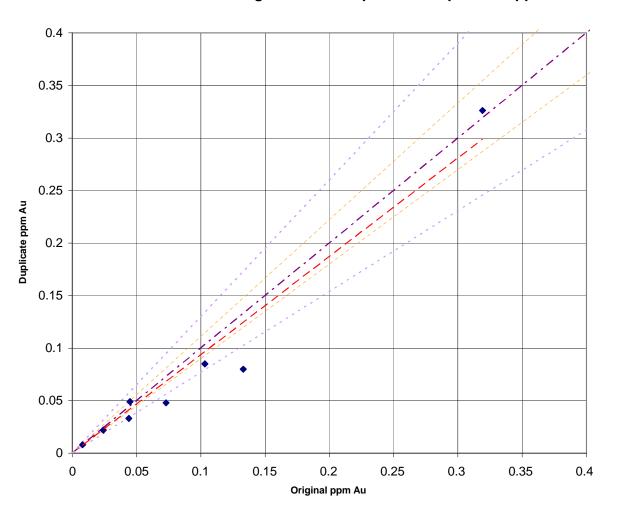
La Manchuria

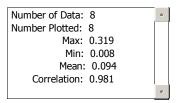
Duplicates Quality Control Report

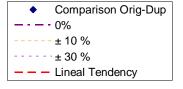
Geochemical Assays of Patagonia Gold

Gustavo Almeira June 2010

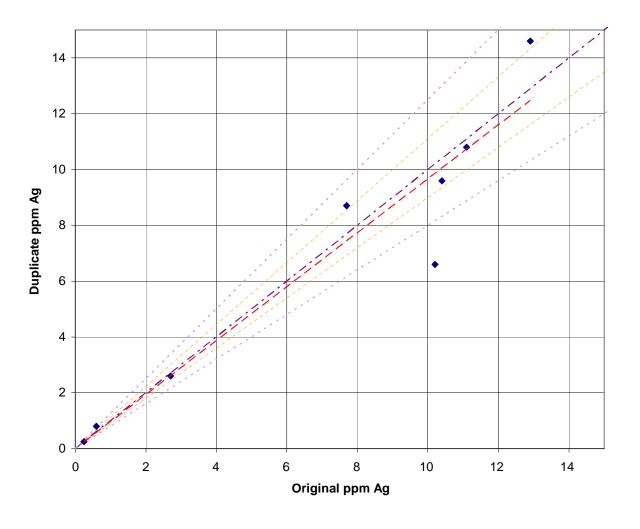
GUSTAVO ALMEIRA – QUALITY CONTROL REPORT

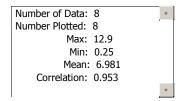

SUMMARY:

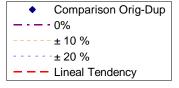

La Manchuria Duplicates Quality Control Check							
Duplicates						C	A/QC
STD	Sent Dup	Analysed DUP	% analysed		BAD DUP	% BAD Blk	Samples for new analysis
DUP	8	8	100.00%		0	0.00%	0


RESULTS:

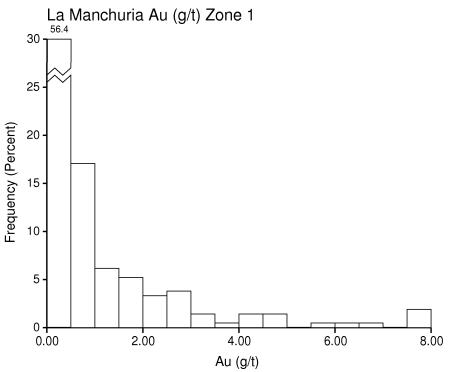
Hole	Original Sample	Duplicate Sample	Original Au_ppm	Duplicate Au_ppm	Original Ag_ppm	Duplicate Ag_ppm
LM-022-DR	163760	163761	0.044	0.033	7.7	8.7
LM-022-DR	163780	163781	0.073	0.048	2.7	2.6
LM-022-DR	163800	163801	0.103	0.085	10.2	6.6
LM-025-DR	163920	163921	0.319	0.326	11.1	10.8
LM-028-DR	163990	163991	0.024	0.022	0.6	0.8
LM-035-DR	164260	164261	0.008	0.008	0.25	0.25
LM-037-DR	164390	164391	0.133	0.08	12.9	14.6
LM-038-DR	164460	164461	0.045	0.049	10.4	9.6

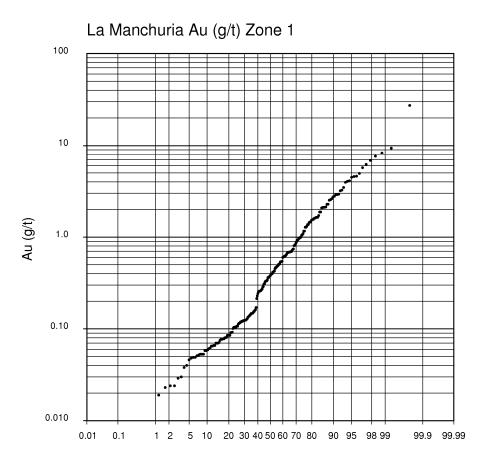

RC Original - Field Duplicate Comparison - ppm Au



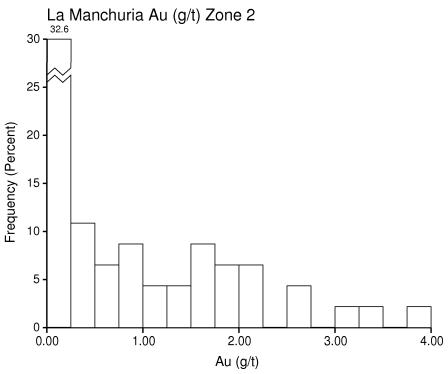


RC Original - Field Duplicate Comparison - ppm Ag



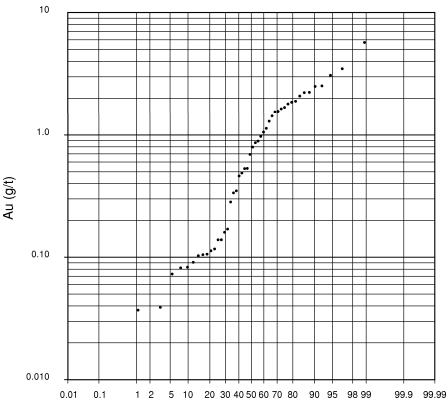

Appendix 4

Au~(g/t)~Composite~Statistics~-~Histograms~and~Log-Probability~Plots

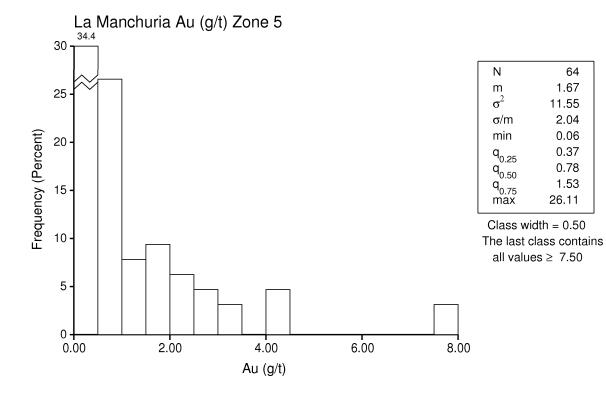


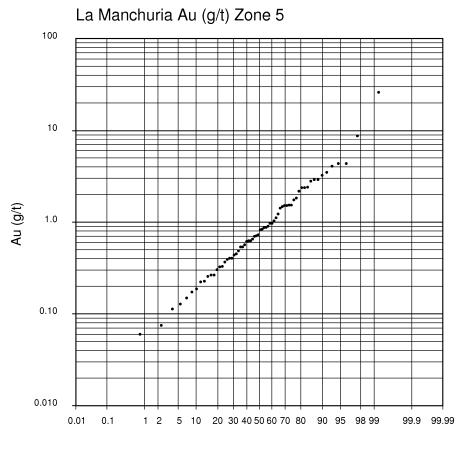
N	211
m	1.09
σ^2	5.54
σ/m	2.16
min	0.00
q _{0.25}	0.10
q _{0.50}	0.38
q _{0.75}	1.09
max	27.36

Class width = 0.50 The last class contains all values ≥ 7.50



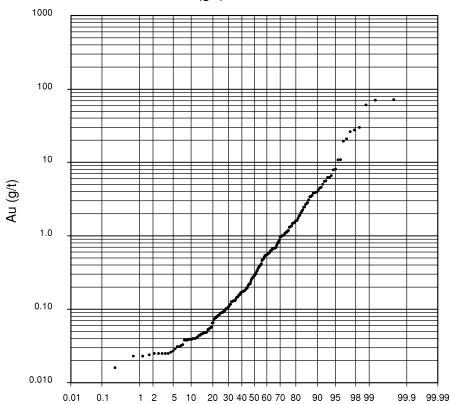
Cumulative Probability (percent)



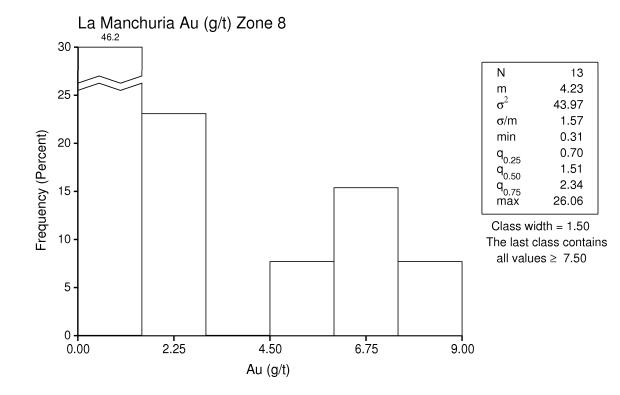

N	46
m	1.08
σ^2	1.30
σ/m	1.06
min	0.04
q _{0.25}	0.12
q _{0.50}	0.74
q _{0.75}	1.64
max	5.71

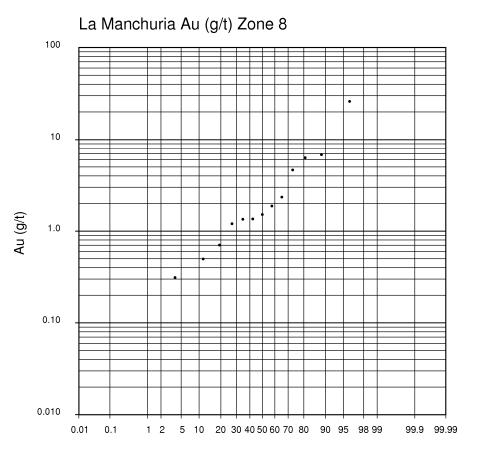
Class width = 0.25 The last class contains all values ≥ 3.75

Cumulative Probability (percent)

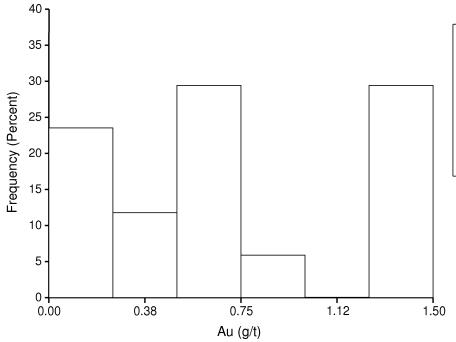


Cumulative Probability (percent)

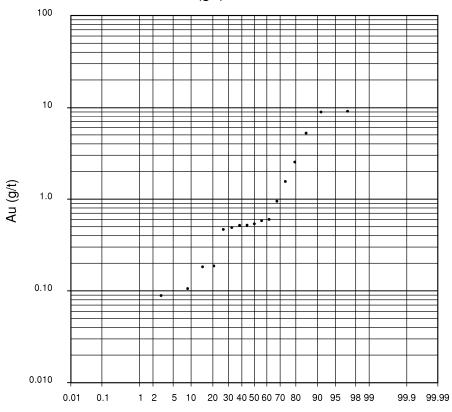


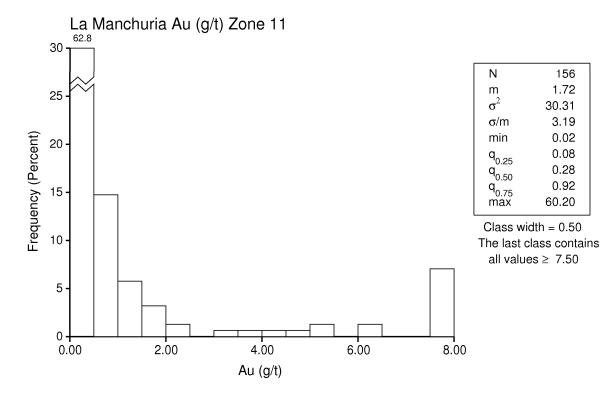

N	211
m	2.53
σ^2	79.50
σ/m	3.53
min	0.02
q _{0.25}	0.09
q _{0.50}	0.29
q _{0.75}	1.12
max	72.59

Class width = 0.50The last class contains all values ≥ 7.50



Cumulative Probability (percent)


Cumulative Probability (percent)


N	17
m	1.92
σ^2	8.30
σ/m	1.50
min	0.09
q _{0.25}	0.19
q _{0.50}	0.54
q _{0.75}	0.95
max	9.17

Class width = 0.25
The last class contains
all values ≥ 1.25

La Manchuria Au (g/t) Zone 10

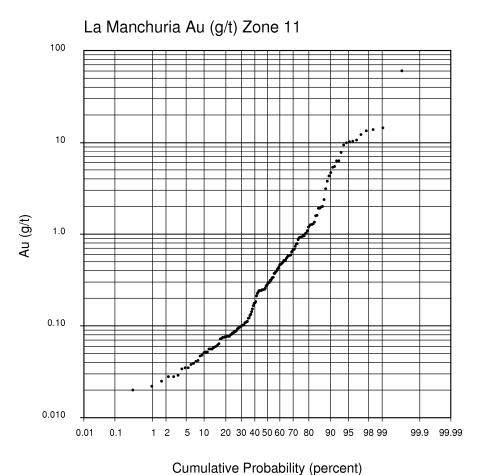
Cumulative Probability (percent)

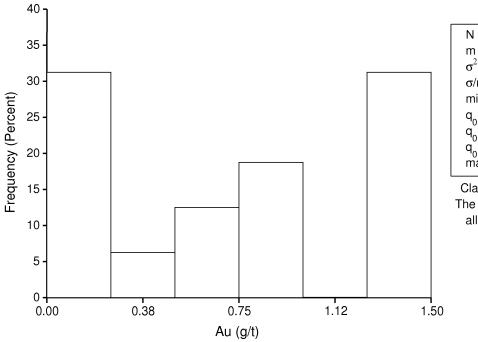
156

1.72

3.19

0.02

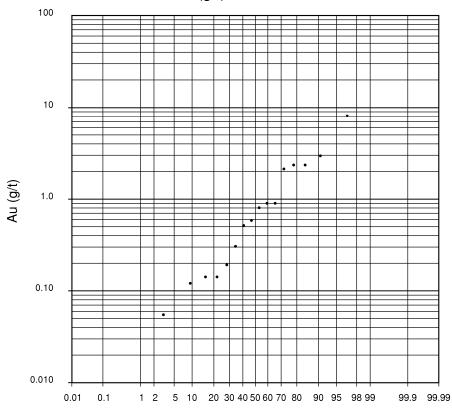

0.08

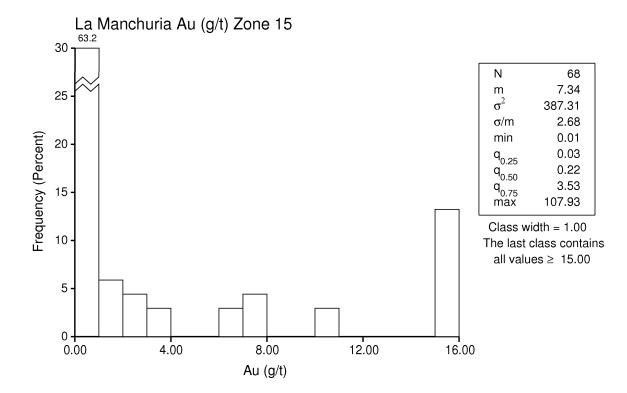

0.28

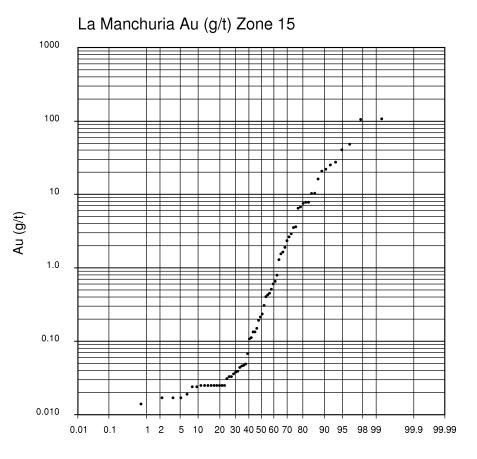
0.92

60.20

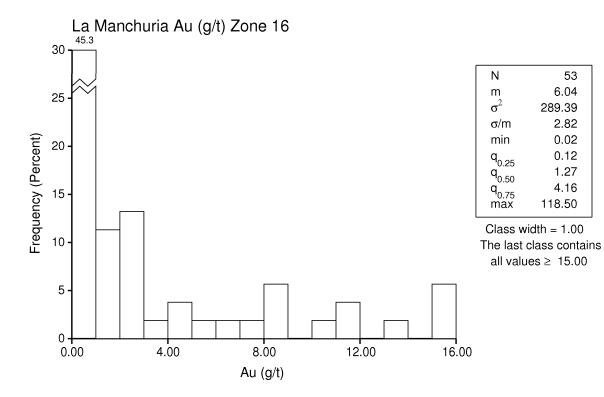
30.31






N	16
m	1.41
σ^2	3.84
σ/m	1.39
min	0.05
q _{0.25}	0.14
q _{0.50}	0.69
q _{0.75}	2.13
max	8.12

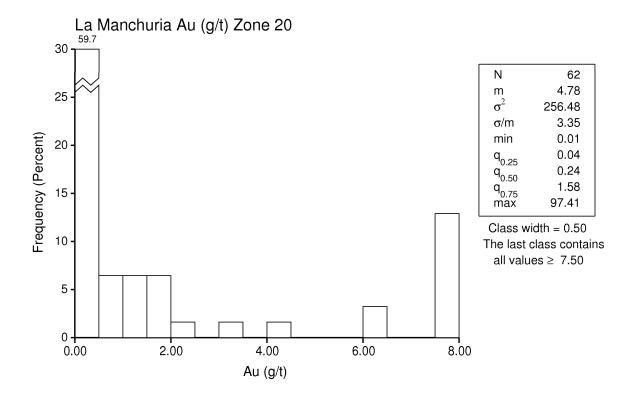
Class width = 0.25
The last class contains
all values ≥ 1.25

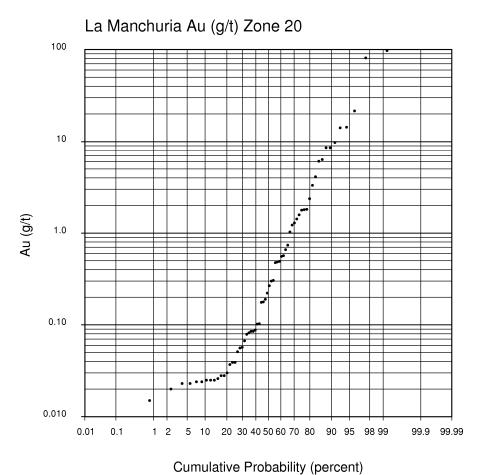

La Manchuria Au (g/t) Zone 13

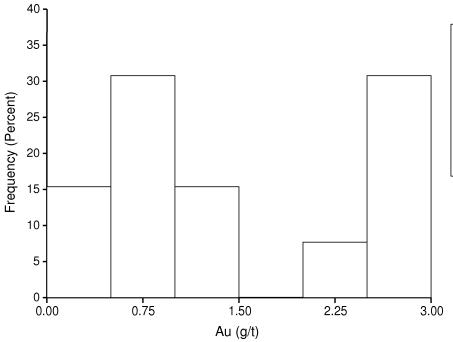
Cumulative Probability (percent)

53 6.04

289.39 2.82

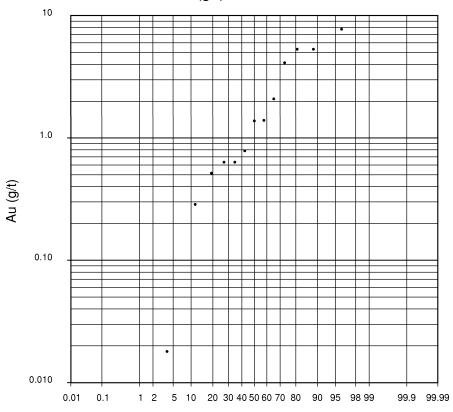

0.02

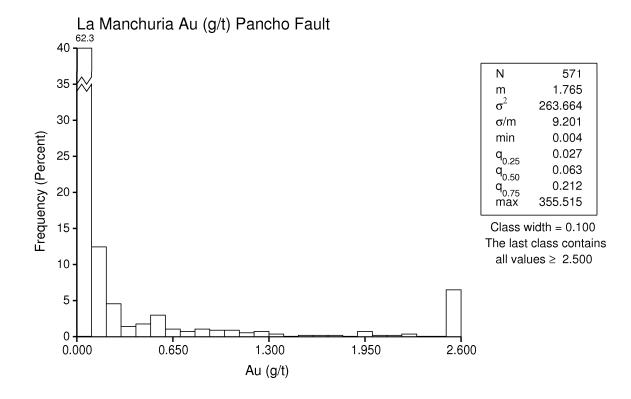

0.12

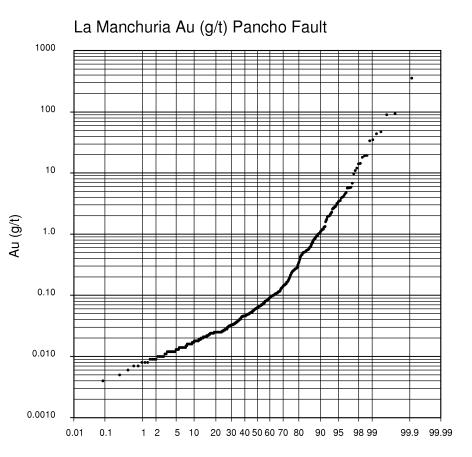

1.27 4.16

118.50

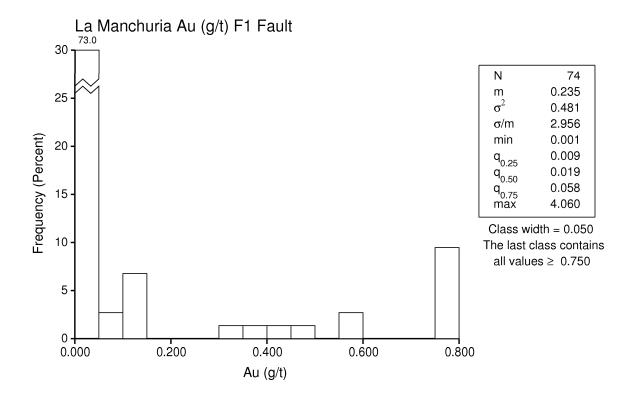
100																
														•		
														r e		
40													•			
10	+	+										,				-
											·					
											•					-
										•	┡					
		+		_						·			_			
									•							
1.0								•								
	\blacksquare							ŀ								
							•									
	-						Ť									+
							••									
						ı.	<u> </u>									-
0.10						•										
																
																-
		+			•											1
					•••											
				•••												
		+	ļ •													

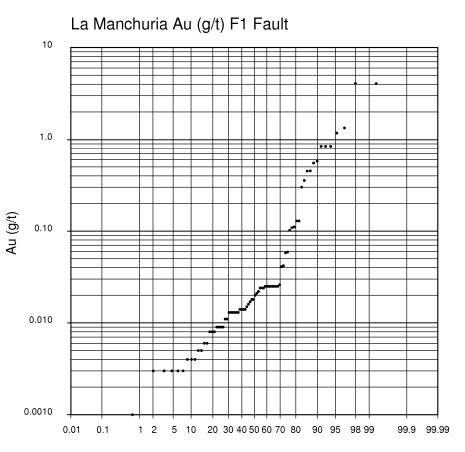


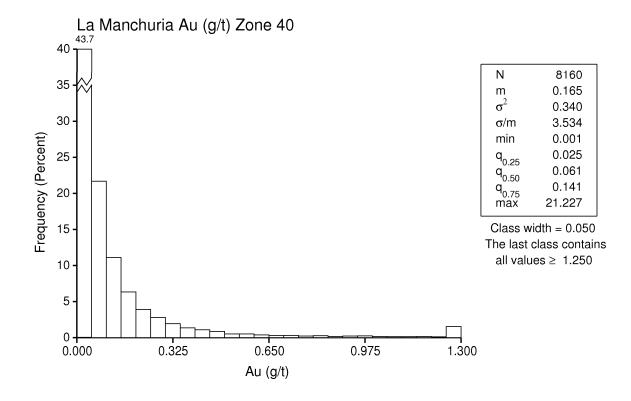


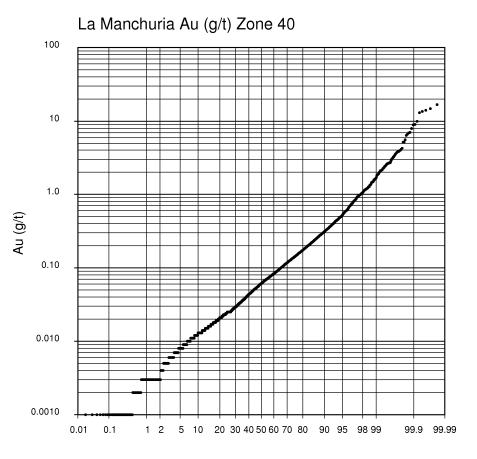

N	13
m	2.33
σ^2	5.63
σ/m	1.02
min	0.02
q _{0.25}	0.51
q _{0.50}	1.38
q _{0.75}	2.10
max	7.74

Class width = 0.50 The last class contains all values ≥ 2.50

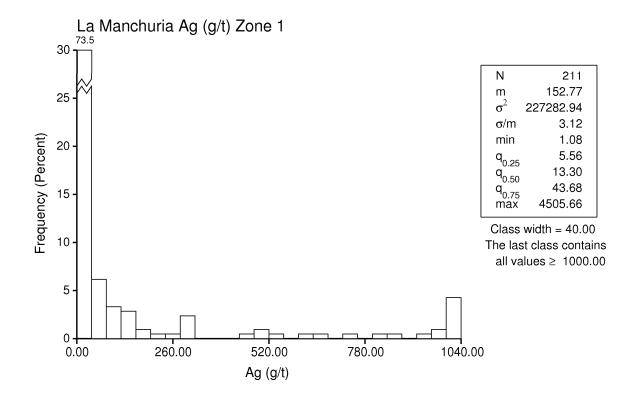

La Manchuria Au (g/t) Zone 25

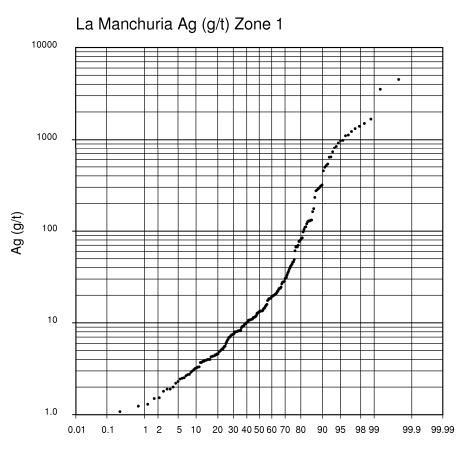


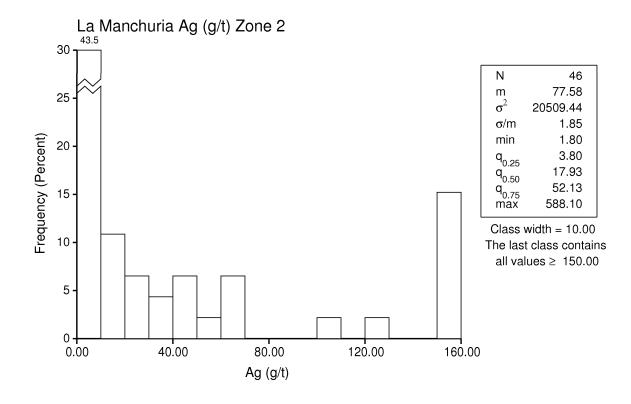


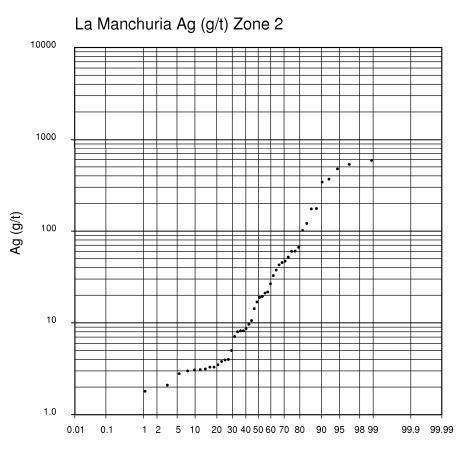

Cumulative Probability (percent)

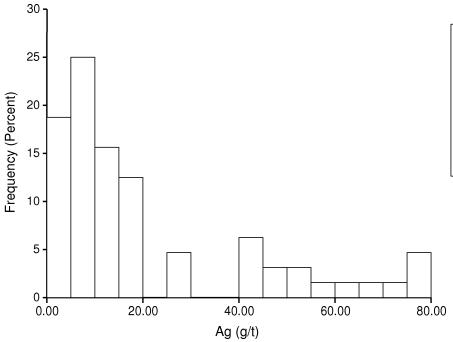
Cumulative Probability (percent)



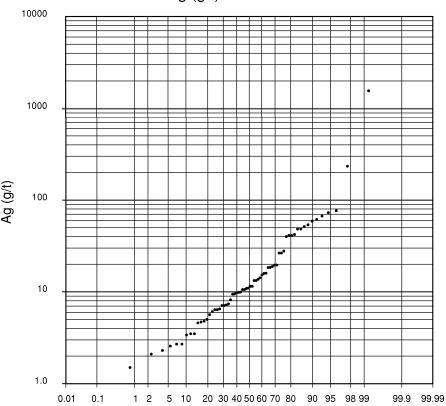

Cumulative Probability (percent)

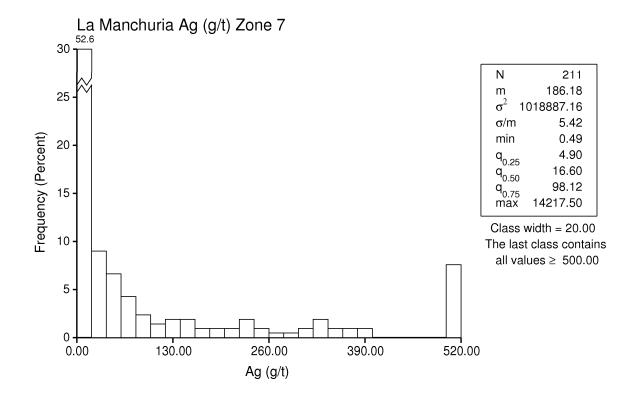

Appendix 5

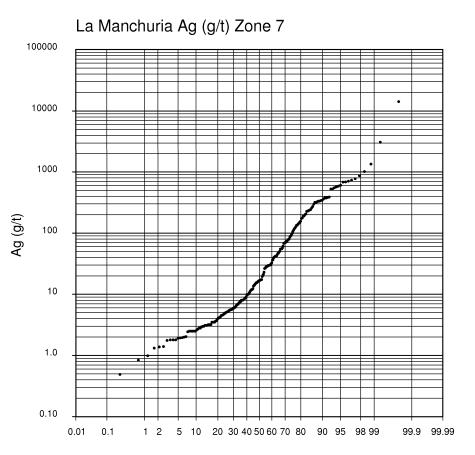

 $\label{eq:composite} \textbf{Ag (g/t) Composite Statistics - Histograms and Log-Probability Plots}$



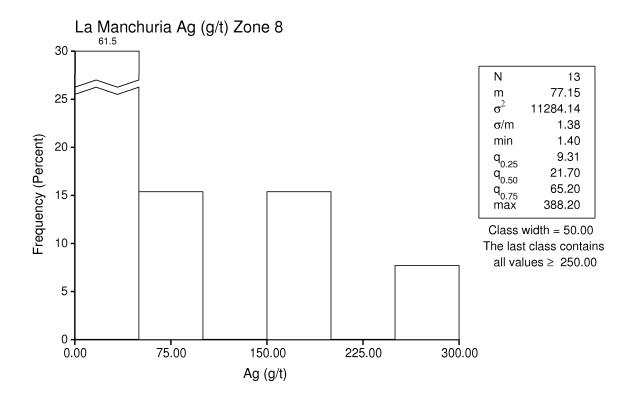
Cumulative Probability (percent)

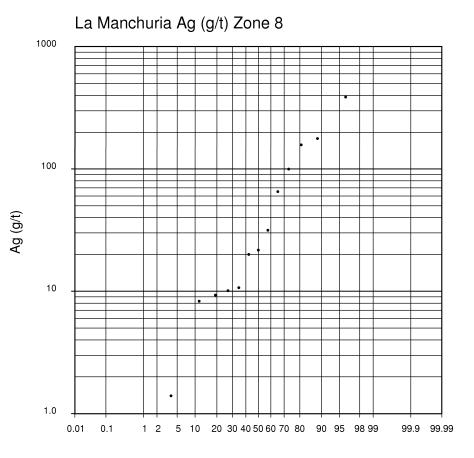

Cumulative Probability (percent)

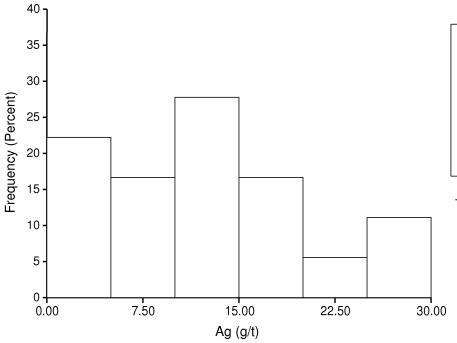



N	64
m	46.98
σ^2	37656.13
σ/m	4.13
min	1.50
q _{0.25}	6.40
q _{0.50}	11.25
q _{0.75}	26.50
max	1565.00

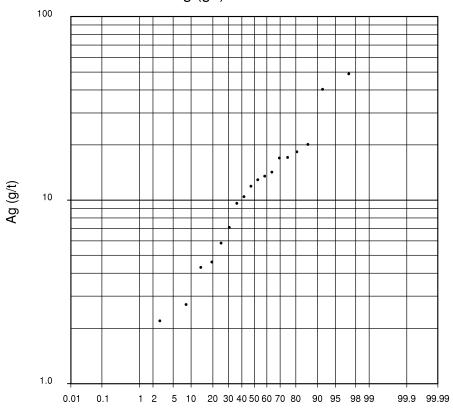
Class width = 5.00 The last class contains all values ≥ 75.00

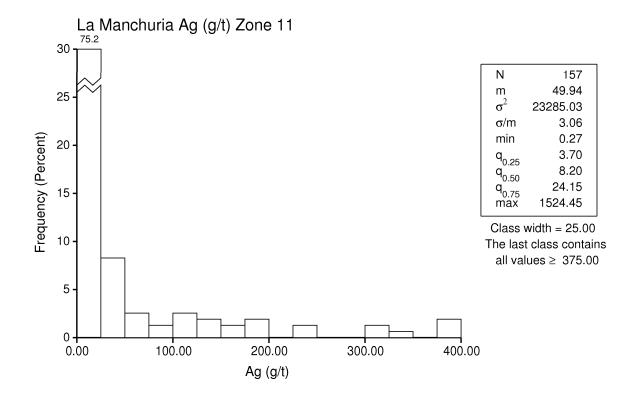

La Manchuria Ag (g/t) Zone 5

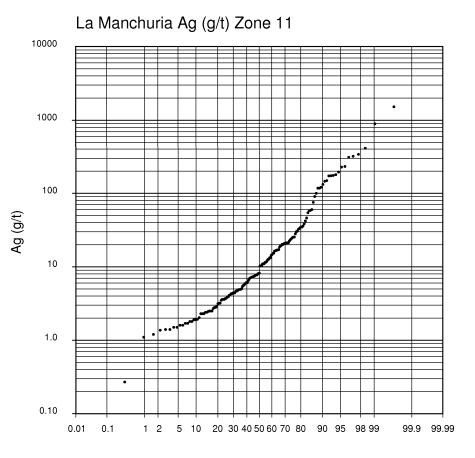



Cumulative Probability (percent)

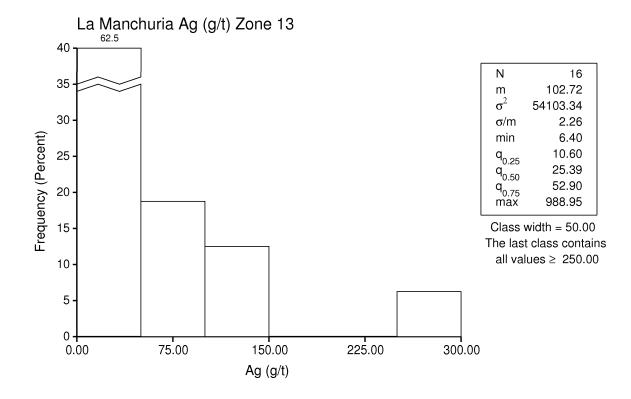
Cumulative Probability (percent)

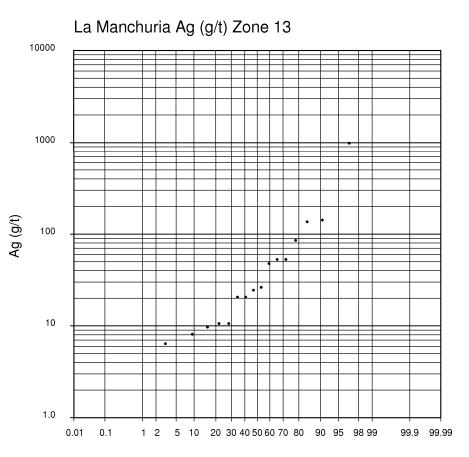

La Manchuria Ag (g/t) Zone 10

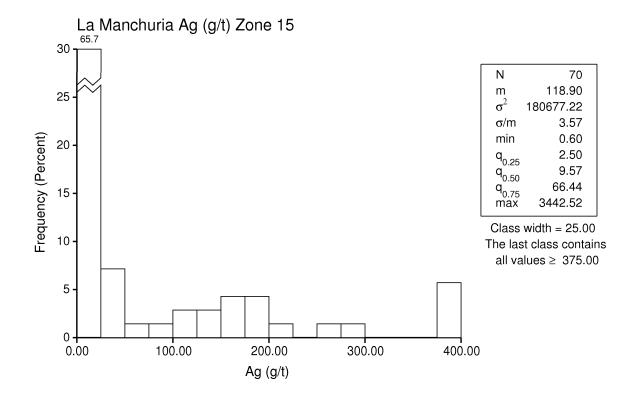

N	18
m	14.50
σ^2	143.39
σ/m	0.83
min	2.20
q _{0.25}	4.60
q _{0.50}	12.40
q _{0.75}	16.95
max	48.90

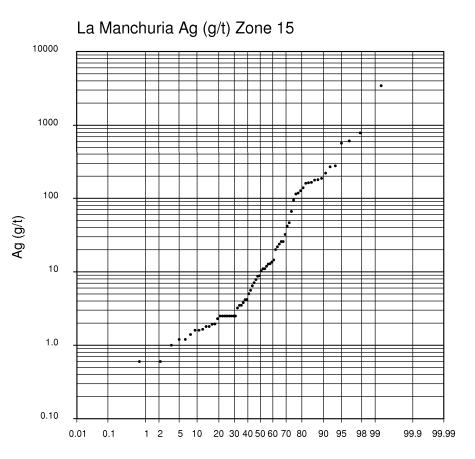

Class width = 5.00 The last class contains all values ≥ 25.00

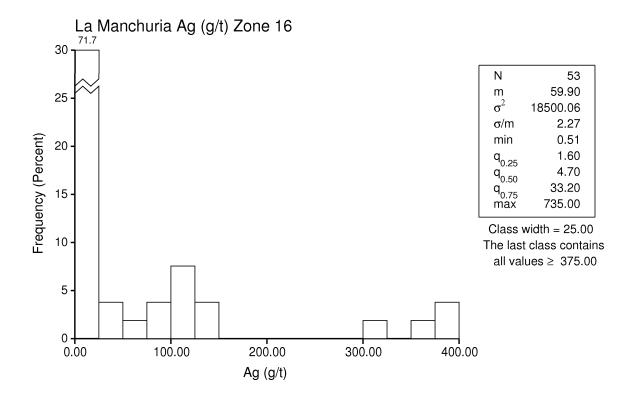
La Manchuria Ag (g/t) Zone 10

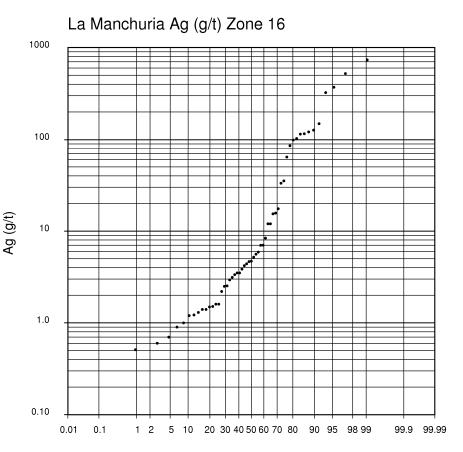


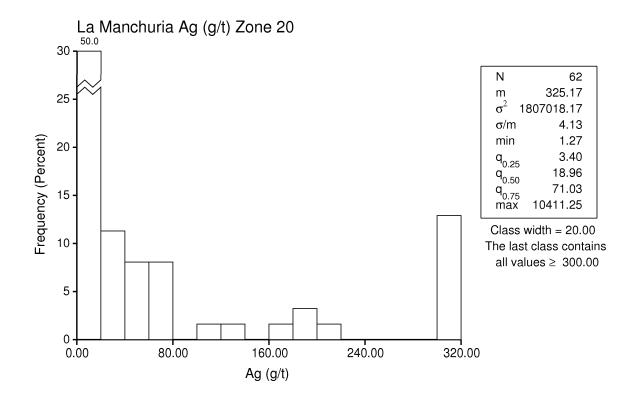

Cumulative Probability (percent)

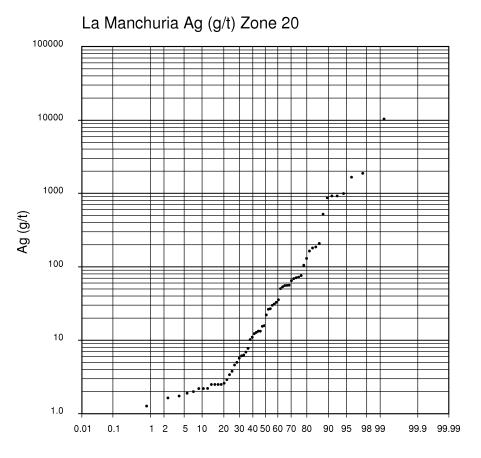


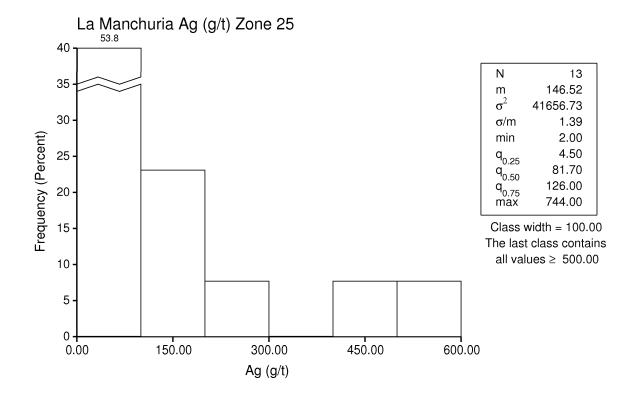

Cumulative Probability (percent)

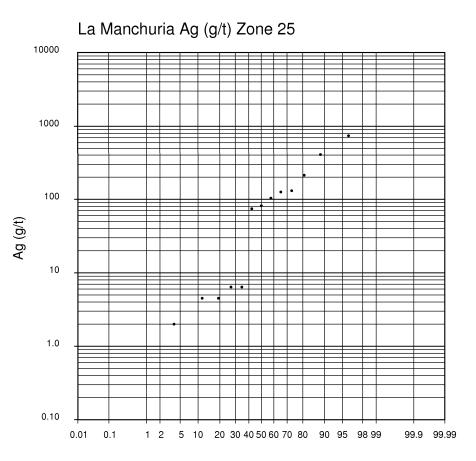


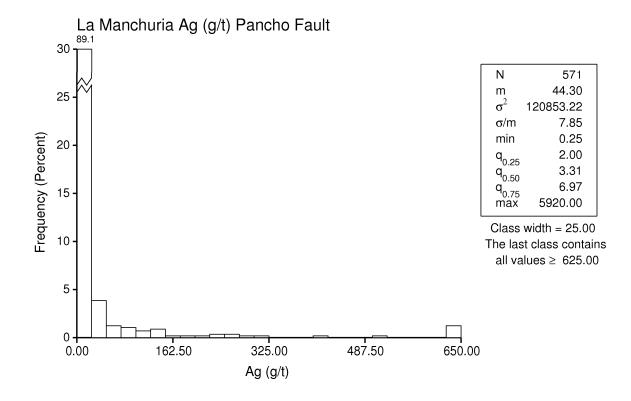

Cumulative Probability (percent)

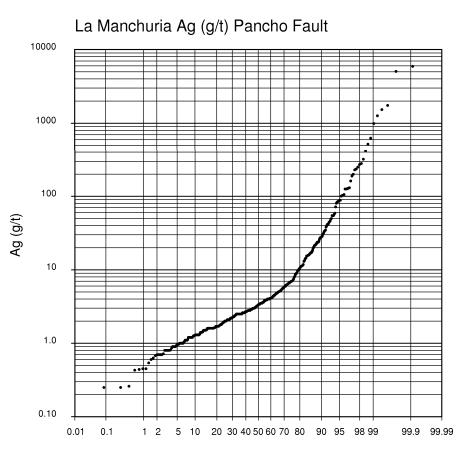


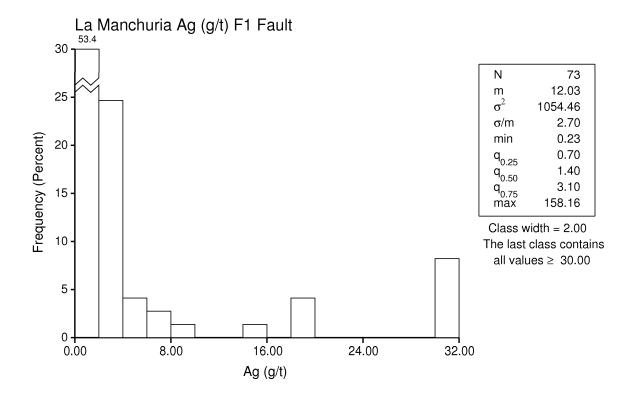

Cumulative Probability (percent)

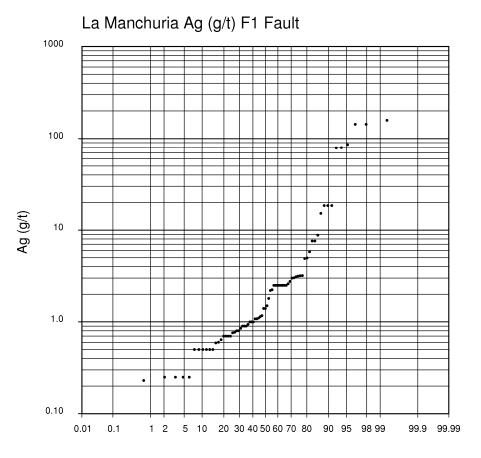


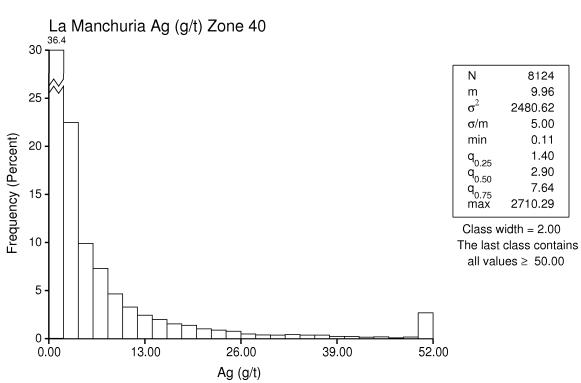

Cumulative Probability (percent)




Cumulative Probability (percent)




Cumulative Probability (percent)



Cumulative Probability (percent)

Cumulative Probability (percent)

8124

9.96

0.11

1.40

2.90 7.64

2710.29

Class width = 2.00

all values ≥ 50.00

2480.62 5.00

Ν

m

 σ^2

 σ /m

min

q_{0.25}

q_{0.50}

q_{0.75} max

							Ag (g/t)				
	10000	La N	/lanch	nuria	Ag (g	g/t) Z	one	40				
											•	
	1000											
/t)	100											
Ag (g/t)	10								/			
	1.0											
				/								

Cumulative Probability (percent)

0.01

1 2

5 10 20 30 40 50 60 70 80 90 95 98 99

99.9 99.99

Appendix 6

La Manchuria Mineral Resource Estimate

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)	(oz)	(oz)	(oz)
Oxide	IND	0.25	Total	212,346	1.39	97.9	2.24	9,474	668,668	15,289
Oxide	IND	0.50	Total	172,215	1.65	117.8	2.67	9,133	652,005	14,809
Oxide	IND	0.75	Total	141,570	1.91	139.1	3.12	8,675	633,338	14,198
Oxide	IND	1.00	Total	121,876	2.11	157.7	3.48	8,250	617,877	13,649
Oxide	IND	1.25	Total	106,488	2.28	176.0	3.83	7,822	602,522	13,098
Oxide	IND	1.50	Total	92,514	2.47	196.4	4.20	7,354	584,193	12,481
Oxide	IND	2.00	Total	69,442	2.88	242.3	5.01	6,422	540,932	11,188
Oxide	IND	3.00	Total	43,296	3.60	335.3	6.57	5,007	466,776	9,147
Oxide	IND	4.00	Total	28,490	4.41	425.0	8.18	4,038	389,268	7,497
Oxide	IND	5.00	Total	17,121	5.62	566.3	10.66	3,093	311,741	5,870

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)	(oz)	(oz)	(oz)
Hypogene	IND	0.25	Total	380,400	2.67	103.9	3.51	32,647	1,271,132	42,971
Hypogene	IND	0.50	Total	327,041	3.07	118.6	4.03	32,232	1,247,337	42,352
Hypogene	IND	0.75	Total	284,136	3.46	133.0	4.54	31,642	1,214,873	41,486
Hypogene	IND	1.00	Total	249,770	3.86	146.6	5.05	31,005	1,177,549	40,530
Hypogene	IND	1.25	Total	222,518	4.24	159.1	5.53	30,367	1,138,009	39,552
Hypogene	IND	1.50	Total	201,350	4.59	170.5	5.97	29,729	1,103,576	38,622
Hypogene	IND	2.00	Total	166,301	5.31	193.2	6.86	28,366	1,033,249	36,666
Hypogene	IND	3.00	Total	118,681	6.76	233.8	8.62	25,784	892,036	32,884
Hypogene	IND	4.00	Total	86,511	8.34	277.5	10.53	23,200	771,901	29,300
Hypogene	IND	5.00	Total	63,157	10.16	330.5	12.76	20,634	671,134	25,914

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)	(oz)	(oz)	(oz)
Total	IND	0.25	Total	592,746	2.21	101.8	3.06	42,121	1,939,800	58,260
Total	IND	0.50	Total	499,255	2.58	118.3	3.56	41,364	1,899,343	57,160
Total	IND	0.75	Total	425,705	2.95	135.0	4.07	40,317	1,848,211	55,684
Total	IND	1.00	Total	371,646	3.29	150.3	4.53	39,255	1,795,426	54,179
Total	IND	1.25	Total	329,006	3.61	164.5	4.98	38,189	1,740,531	52,650
Total	IND	1.50	Total	293,864	3.92	178.6	5.41	37,083	1,687,769	51,103
Total	IND	2.00	Total	235,742	4.59	207.7	6.31	34,788	1,574,181	47,854
Total	IND	3.00	Total	161,977	5.91	260.9	8.07	30,791	1,358,812	42,032
Total	IND	4.00	Total	115,002	7.37	314.0	9.95	27,238	1,161,169	36,797
Total	IND	5.00	Total	80,279	9.19	380.8	12.31	23,727	982,875	31,785

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)	(oz)	(oz)	(oz)
Oxide	INF	0.25	Total	2,413,931	0.48	21.6	0.66	37,354	1,673,194	51,223
Oxide	INF	0.50	Total	906,321	0.91	33.4	1.18	26,578	972,438	34,396
Oxide	INF	0.75	Total	496,699	1.32	42.5	1.66	21,153	678,841	26,481
Oxide	INF	1.00	Total	339,395	1.65	49.6	2.03	17,957	541,656	22,154
Oxide	INF	1.25	Total	234,179	1.99	58.4	2.44	15,004	439,953	18,391
Oxide	INF	1.50	Total	182,149	2.25	65.5	2.75	13,182	383,873	16,134
Oxide	INF	2.00	Total	115,007	2.72	82.7	3.36	10,062	305,707	12,434
Oxide	INF	3.00	Total	48,967	3.57	130.8	4.63	5,626	205,956	7,282
Oxide	INF	4.00	Total	23,105	4.90	136.0	5.94	3,641	100,999	4,409
Oxide	INF	5.00	Total	6,722	7.63	228.4	9.40	1,649	49,373	2,031

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)	(oz)	(oz)	(oz)
Hypogene	INF	0.25	Total	3,452,241	0.66	25.3	0.87	73,583	2,803,022	96,267
Hypogene	INF	0.50	Total	1,503,478	1.20	42.8	1.55	58,164	2,069,848	74,724
Hypogene	INF	0.75	Total	973,584	1.64	53.0	2.05	51,241	1,659,252	64,285
Hypogene	INF	1.00	Total	657,863	2.11	66.1	2.63	44,666	1,397,212	55,574
Hypogene	INF	1.25	Total	493,351	2.56	74.2	3.13	40,643	1,176,190	49,673
Hypogene	INF	1.50	Total	384,183	2.99	83.9	3.63	36,961	1,036,814	44,864
Hypogene	INF	2.00	Total	258,638	3.79	102.1	4.56	31,504	849,255	37,917
Hypogene	INF	3.00	Total	134,846	5.45	146.0	6.55	23,646	633,147	28,419
Hypogene	INF	4.00	Total	82,925	7.14	183.8	8.51	19,040	490,126	22,698
Hypogene	INF	5.00	Total	50,619	9.51	222.5	11.13	15,480	362,075	18,112

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)	(oz)	(oz)	(oz)
Total	INF	0.25	Total	5,866,172	0.59	23.7	0.78	110,936	4,476,216	147,490
Total	INF	0.50	Total	2,409,799	1.09	39.3	1.41	84,742	3,042,285	109,119
Total	INF	0.75	Total	1,470,284	1.53	49.5	1.92	72,395	2,338,093	90,766
Total	INF	1.00	Total	997,258	1.95	60.5	2.42	62,623	1,938,868	77,728
Total	INF	1.25	Total	727,530	2.38	69.1	2.91	55,647	1,616,143	68,065
Total	INF	1.50	Total	566,332	2.75	78.0	3.35	50,143	1,420,687	60,998
Total	INF	2.00	Total	373,645	3.46	96.1	4.19	41,566	1,154,963	50,350
Total	INF	3.00	Total	183,813	4.95	142.0	6.04	29,272	839,103	35,700
Total	INF	4.00	Total	106,030	6.65	173.4	7.95	22,681	591,125	27,107
Total	INF	5.00	Total	57,341	9.29	223.2	10.93	17,129	411,448	20,143

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	1	107,410	1.35	132.4	2.53	2	12,033	1.40	61.1	1.91
Oxide	IND	0.50	1	90,772	1.55	154.6	2.92	2	11,022	1.50	65.8	2.05
Oxide	IND	0.75	1	78,418	1.71	176.3	3.28	2	10,491	1.55	68.3	2.12
Oxide	IND	1.00	1	69,413	1.84	196.2	3.60	2	9,173	1.68	74.9	2.30
Oxide	IND	1.25	1	61,673	1.96	217.5	3.91	2	8,613	1.74	77.3	2.38
Oxide	IND	1.50	1	54,545	2.08	240.3	4.24	2	7,305	1.88	82.8	2.56
Oxide	IND	2.00	1	42,866	2.32	289.4	4.92	2	4,521	2.20	101.8	3.05
Oxide	IND	3.00	1	28,722	2.70	379.5	6.14	2	1,967	2.72	149.2	3.99
Oxide	IND	4.00	1	18,419	3.19	489.3	7.64	2	755	3.01	208.7	4.82
Oxide	IND	5.00	1	11,053	3.82	649.9	9.74	2	297	2.41	348.7	5.57

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	1	20,275	0.80	77.1	1.49	2	10,447	1.02	57.9	1.51
Hypogene	IND	0.50	1	13,867	1.06	106.4	2.00	2	9,126	1.12	64.8	1.67
Hypogene	IND	0.75	1	9,080	1.38	150.7	2.73	2	8,106	1.21	70.2	1.81
Hypogene	IND	1.00	1	6,766	1.66	190.7	3.37	2	7,111	1.27	77.3	1.93
Hypogene	IND	1.25	1	5,382	1.90	228.8	3.95	2	5,150	1.41	97.0	2.25
Hypogene	IND	1.50	1	4,578	2.06	261.2	4.42	2	3,678	1.57	118.0	2.60
Hypogene	IND	2.00	1	3,864	2.31	289.6	4.92	2	1,876	1.75	191.1	3.46
Hypogene	IND	3.00	1	2,920	2.68	341.5	5.76	2	999	1.99	262.2	4.36
Hypogene	IND	4.00	1	1,913	3.05	430.4	6.95	2	465	2.00	373.6	5.41
Hypogene	IND	5.00	1	1,270	3.41	522.2	8.15	2	187	2.70	512.7	7.39

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	IND	0.25	1	127,685	1.26	123.6	2.36	2	22,480	1.22	59.6	1.72
Total	IND	0.50	1	104,639	1.48	148.2	2.80	2	20,148	1.33	65.3	1.88
Total	IND	0.75	1	87,498	1.68	173.7	3.23	2	18,597	1.40	69.1	1.98
Total	IND	1.00	1	76,179	1.83	195.7	3.58	2	16,284	1.50	75.9	2.14
Total	IND	1.25	1	67,055	1.96	218.4	3.91	2	13,763	1.61	84.7	2.33
Total	IND	1.50	1	59,123	2.08	241.9	4.25	2	10,983	1.78	94.5	2.58
Total	IND	2.00	1	46,730	2.32	289.4	4.92	2	6,397	2.07	128.0	3.17
Total	IND	3.00	1	31,642	2.70	376.0	6.10	2	2,966	2.47	187.2	4.11
Total	IND	4.00	1	20,332	3.18	483.7	7.57	2	1,220	2.62	271.6	5.05
Total	IND	5.00	1	12,323	3.77	636.8	9.57	2	484	2.52	412.1	6.27

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	1	46,574	1.01	84.8	1.76	2	5,815	2.20	43.2	2.50
Oxide	INF	0.50	1	41,758	1.10	92.8	1.92	2	5,815	2.20	43.2	2.50
Oxide	INF	0.75	1	37,048	1.19	101.3	2.08	2	5,645	2.25	43.9	2.55
Oxide	INF	1.00	1	33,088	1.27	109.2	2.23	2	5,436	2.31	44.7	2.62
Oxide	INF	1.25	1	24,295	1.40	137.5	2.63	2	5,419	2.32	44.7	2.62
Oxide	INF	1.50	1	19,096	1.50	164.8	2.97	2	5,103	2.41	44.0	2.70
Oxide	INF	2.00	1	14,049	1.59	203.0	3.42	2	3,904	2.66	47.9	2.98
Oxide	INF	3.00	1	9,588	1.74	235.8	3.87	2	2,025	3.24	53.7	3.58
Oxide	INF	4.00	1	3,051	2.19	280.5	4.72	2	207	4.04	46.4	4.28
Oxide	INF	5.00	1	990	2.63	316.2	5.47	2	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	1	100,237	0.66	23.6	0.85	2	13,771	0.81	49.7	1.24
Hypogene	INF	0.50	1	64,853	0.85	31.4	1.11	2	12,571	0.87	53.0	1.32
Hypogene	INF	0.75	1	43,347	1.06	36.7	1.35	2	11,088	0.91	58.0	1.41
Hypogene	INF	1.00	1	12,043	1.85	105.0	2.74	2	9,767	0.94	63.3	1.49
Hypogene	INF	1.25	1	8,594	2.19	139.8	3.40	2	6,364	0.96	81.2	1.68
Hypogene	INF	1.50	1	7,829	2.30	149.5	3.60	2	3,854	1.02	96.5	1.88
Hypogene	INF	2.00	1	7,500	2.36	152.4	3.67	2	1,247	0.95	141.9	2.24
Hypogene	INF	3.00	1	6,103	2.66	151.8	3.96	2	83	2.07	131.5	3.21
Hypogene	INF	4.00	1	1,945	1.90	317.7	4.79	2	0	0.00	0.0	0.00
Hypogene	INF	5.00	1	438	3.24	258.0	5.50	2	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	INF	0.25	1	146,811	0.77	43.0	1.14	2	19,586	1.22	47.7	1.61
Total	INF	0.50	1	106,611	0.95	55.5	1.43	2	18,386	1.29	49.9	1.69
Total	INF	0.75	1	80,395	1.12	66.5	1.69	2	16,733	1.36	53.3	1.80
Total	INF	1.00	1	45,131	1.42	108.1	2.37	2	15,203	1.43	56.6	1.89
Total	INF	1.25	1	32,890	1.61	138.1	2.83	2	11,783	1.59	64.4	2.11
Total	INF	1.50	1	26,925	1.73	160.4	3.16	2	8,957	1.81	66.6	2.35
Total	INF	2.00	1	21,550	1.86	185.4	3.51	2	5,151	2.25	70.7	2.80
Total	INF	3.00	1	15,691	2.10	203.1	3.90	2	2,108	3.19	56.7	3.57
Total	INF	4.00	1	4,996	2.08	295.0	4.75	2	207	4.04	46.4	4.28
Total	INF	5.00	1	1,427	2.82	298.4	5.48	2	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	5	23,431	1.78	21.6	1.89	7	20,734	0.95	89.6	1.75
Oxide	IND	0.50	5	19,722	2.06	24.1	2.18	7	16,800	1.12	107.0	2.07
Oxide	IND	0.75	5	15,919	2.43	26.8	2.56	7	13,292	1.31	128.7	2.45
Oxide	IND	1.00	5	12,633	2.87	28.8	3.00	7	10,473	1.51	154.6	2.89
Oxide	IND	1.25	5	10,400	3.29	29.5	3.40	7	9,213	1.61	170.0	3.13
Oxide	IND	1.50	5	8,603	3.73	30.7	3.83	7	8,201	1.69	184.9	3.34
Oxide	IND	2.00	5	6,444	4.44	31.3	4.52	7	6,873	1.81	205.9	3.66
Oxide	IND	3.00	5	3,144	6.67	32.7	6.64	7	4,129	2.07	264.6	4.45
Oxide	IND	4.00	5	2,324	7.84	32.8	7.76	7	2,456	2.20	316.8	5.07
Oxide	IND	5.00	5	1,045	12.07	51.3	11.95	7	939	2.69	375.1	6.08

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	5	7,226	0.87	61.6	1.41	7	132,489	1.95	153.2	3.30
Hypogene	IND	0.50	5	6,564	0.92	67.6	1.51	7	113,855	2.24	175.3	3.78
Hypogene	IND	0.75	5	4,103	1.22	94.7	2.05	7	98,877	2.53	196.9	4.25
Hypogene	IND	1.00	5	2,350	1.63	146.7	2.93	7	87,719	2.80	215.8	4.69
Hypogene	IND	1.25	5	1,698	1.96	187.6	3.63	7	78,450	3.06	233.6	5.11
Hypogene	IND	1.50	5	1,079	2.25	292.2	4.89	7	70,862	3.33	249.4	5.51
Hypogene	IND	2.00	5	695	2.60	448.3	6.68	7	57,509	3.92	282.9	6.39
Hypogene	IND	3.00	5	285	2.82	1045.9	12.52	7	38,387	5.28	353.1	8.34
Hypogene	IND	4.00	5	248	3.09	1156.9	13.81	7	25,778	6.95	436.2	10.71
Hypogene	IND	5.00	5	240	3.15	1185.5	14.15	7	17,939	8.87	530.5	13.42

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	IND	0.25	5	30,657	1.57	31.1	1.78	7	153,222	1.82	144.6	3.09
Total	IND	0.50	5	26,287	1.78	35.0	2.02	7	130,655	2.10	166.5	3.56
Total	IND	0.75	5	20,022	2.18	40.7	2.45	7	112,168	2.38	188.8	4.04
Total	IND	1.00	5	14,984	2.67	47.3	2.99	7	98,192	2.66	209.3	4.49
Total	IND	1.25	5	12,098	3.11	51.7	3.44	7	87,663	2.91	226.9	4.90
Total	IND	1.50	5	9,682	3.56	59.8	3.95	7	79,063	3.16	242.7	5.28
Total	IND	2.00	5	7,139	4.26	71.9	4.73	7	64,382	3.69	274.7	6.09
Total	IND	3.00	5	3,429	6.35	116.9	7.13	7	42,516	4.97	344.5	7.96
Total	IND	4.00	5	2,572	7.38	141.4	8.34	7	28,235	6.54	425.8	10.22
Total	IND	5.00	5	1,285	10.40	262.9	12.36	7	18,878	8.57	522.8	13.05

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	5	12,992	2.14	23.4	2.26	7	14,905	1.02	125.7	2.15
Oxide	INF	0.50	5	11,609	2.36	25.0	2.48	7	12,085	1.18	152.0	2.55
Oxide	INF	0.75	5	10,837	2.49	25.8	2.61	7	9,554	1.38	186.4	3.06
Oxide	INF	1.00	5	9,885	2.67	26.0	2.78	7	8,767	1.46	199.4	3.26
Oxide	INF	1.25	5	8,614	2.93	25.8	3.03	7	8,517	1.49	203.4	3.33
Oxide	INF	1.50	5	7,892	3.09	26.3	3.18	7	8,179	1.52	208.2	3.41
Oxide	INF	2.00	5	6,675	3.36	26.5	3.44	7	7,431	1.57	221.8	3.58
Oxide	INF	3.00	5	3,842	4.02	27.8	4.08	7	6,412	1.64	230.9	3.73
Oxide	INF	4.00	5	2,593	4.39	24.9	4.41	7	1,650	2.18	236.8	4.29
Oxide	INF	5.00	5	91	4.69	67.1	5.08	7	15	3.62	233.7	5.64

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	5	19,849	1.26	21.6	1.40	7	72,423	1.10	126.8	2.24
Hypogene	INF	0.50	5	18,370	1.34	22.3	1.48	7	62,903	1.23	143.6	2.52
Hypogene	INF	0.75	5	14,907	1.56	21.6	1.68	7	56,201	1.33	157.3	2.74
Hypogene	INF	1.00	5	12,516	1.73	20.1	1.83	7	49,815	1.44	171.9	2.99
Hypogene	INF	1.25	5	11,825	1.77	20.8	1.88	7	44,648	1.55	183.5	3.20
Hypogene	INF	1.50	5	8,749	1.88	25.9	2.03	7	39,211	1.68	197.4	3.45
Hypogene	INF	2.00	5	3,097	2.29	51.7	2.66	7	32,247	1.88	217.1	3.82
Hypogene	INF	3.00	5	814	2.85	73.1	3.40	7	21,606	2.23	252.8	4.50
Hypogene	INF	4.00	5	0	0.00	0.0	0.00	7	12,948	2.77	270.8	5.18
Hypogene	INF	5.00	5	0	0.00	0.0	0.00	7	5,531	3.70	284.6	6.20

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	INF	0.25	5	32,842	1.61	22.3	1.74	7	87,329	1.08	126.6	2.22
Total	INF	0.50	5	29,979	1.74	23.4	1.87	7	74,988	1.22	145.0	2.52
Total	INF	0.75	5	25,743	1.95	23.4	2.07	7	65,755	1.34	161.5	2.79
Total	INF	1.00	5	22,401	2.14	22.7	2.25	7	58,582	1.44	176.1	3.03
Total	INF	1.25	5	20,439	2.26	22.9	2.36	7	53,164	1.54	186.7	3.22
Total	INF	1.50	5	16,641	2.45	26.1	2.58	7	47,390	1.65	199.2	3.45
Total	INF	2.00	5	9,773	3.02	34.5	3.19	7	39,678	1.82	218.0	3.78
Total	INF	3.00	5	4,656	3.81	35.7	3.96	7	28,018	2.10	247.8	4.32
Total	INF	4.00	5	2,593	4.39	24.9	4.41	7	14,599	2.71	267.0	5.08
Total	INF	5.00	5	91	4.69	67.1	5.08	7	5,546	3.70	284.4	6.19

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	8	0	0.00	0.0	0.00	10	7,517	2.37	15.0	2.39
Oxide	IND	0.50	8	0	0.00	0.0	0.00	10	6,794	2.58	16.0	2.60
Oxide	IND	0.75	8	0	0.00	0.0	0.00	10	4,906	3.37	17.3	3.37
Oxide	IND	1.00	8	0	0.00	0.0	0.00	10	4,406	3.67	18.0	3.65
Oxide	IND	1.25	8	0	0.00	0.0	0.00	10	3,916	4.00	18.6	3.98
Oxide	IND	1.50	8	0	0.00	0.0	0.00	10	3,536	4.29	19.3	4.25
Oxide	IND	2.00	8	0	0.00	0.0	0.00	10	2,732	5.05	21.4	5.00
Oxide	IND	3.00	8	0	0.00	0.0	0.00	10	1,812	6.41	25.7	6.33
Oxide	IND	4.00	8	0	0.00	0.0	0.00	10	1,386	7.34	28.5	7.24
Oxide	IND	5.00	8	0	0.00	0.0	0.00	10	1,168	7.86	31.6	7.77

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	8	9,305	3.67	79.8	4.23	10	255	0.60	9.6	0.66
Hypogene	IND	0.50	8	9,254	3.69	80.1	4.25	10	255	0.60	9.6	0.66
Hypogene	IND	0.75	8	9,254	3.69	80.1	4.25	10	0	0.00	0.0	0.00
Hypogene	IND	1.00	8	9,254	3.69	80.1	4.25	10	0	0.00	0.0	0.00
Hypogene	IND	1.25	8	9,254	3.69	80.1	4.25	10	0	0.00	0.0	0.00
Hypogene	IND	1.50	8	9,244	3.69	80.2	4.26	10	0	0.00	0.0	0.00
Hypogene	IND	2.00	8	8,146	4.02	83.6	4.61	10	0	0.00	0.0	0.00
Hypogene	IND	3.00	8	6,633	4.47	87.5	5.07	10	0	0.00	0.0	0.00
Hypogene	IND	4.00	8	5,095	4.93	91.7	5.55	10	0	0.00	0.0	0.00
Hypogene	IND	5.00	8	2,339	6.17	91.3	6.72	10	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	IND	0.25	8	9,305	3.67	79.8	4.23	10	7,772	2.31	14.9	2.33
Total	IND	0.50	8	9,254	3.69	80.1	4.25	10	7,050	2.51	15.7	2.53
Total	IND	0.75	8	9,254	3.69	80.1	4.25	10	4,906	3.37	17.3	3.37
Total	IND	1.00	8	9,254	3.69	80.1	4.25	10	4,406	3.67	18.0	3.65
Total	IND	1.25	8	9,254	3.69	80.1	4.25	10	3,916	4.00	18.6	3.98
Total	IND	1.50	8	9,244	3.69	80.2	4.26	10	3,536	4.29	19.3	4.25
Total	IND	2.00	8	8,146	4.02	83.6	4.61	10	2,732	5.05	21.4	5.00
Total	IND	3.00	8	6,633	4.47	87.5	5.07	10	1,812	6.41	25.7	6.33
Total	IND	4.00	8	5,095	4.93	91.7	5.55	10	1,386	7.34	28.5	7.24
Total	IND	5.00	8	2,339	6.17	91.3	6.72	10	1,168	7.86	31.6	7.77

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	8	0	0.00	0.0	0.00	10	7,323	2.56	16.5	2.59
Oxide	INF	0.50	8	0	0.00	0.0	0.00	10	6,323	2.91	18.3	2.94
Oxide	INF	0.75	8	0	0.00	0.0	0.00	10	4,969	3.55	20.7	3.57
Oxide	INF	1.00	8	0	0.00	0.0	0.00	10	4,757	3.68	21.0	3.69
Oxide	INF	1.25	8	0	0.00	0.0	0.00	10	4,722	3.70	21.0	3.71
Oxide	INF	1.50	8	0	0.00	0.0	0.00	10	4,701	3.71	21.1	3.72
Oxide	INF	2.00	8	0	0.00	0.0	0.00	10	4,363	3.86	21.8	3.87
Oxide	INF	3.00	8	0	0.00	0.0	0.00	10	3,275	4.32	24.6	4.34
Oxide	INF	4.00	8	0	0.00	0.0	0.00	10	2,302	4.65	26.4	4.67
Oxide	INF	5.00	8	0	0.00	0.0	0.00	10	526	5.00	29.0	5.02

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	8	7,477	1.96	76.3	2.58	10	0	0.00	0.0	0.00
Hypogene	INF	0.50	8	7,477	1.96	76.3	2.58	10	0	0.00	0.0	0.00
Hypogene	INF	0.75	8	7,477	1.96	76.3	2.58	10	0	0.00	0.0	0.00
Hypogene	INF	1.00	8	7,477	1.96	76.3	2.58	10	0	0.00	0.0	0.00
Hypogene	INF	1.25	8	7,477	1.96	76.3	2.58	10	0	0.00	0.0	0.00
Hypogene	INF	1.50	8	7,477	1.96	76.3	2.58	10	0	0.00	0.0	0.00
Hypogene	INF	2.00	8	5,207	2.30	78.6	2.92	10	0	0.00	0.0	0.00
Hypogene	INF	3.00	8	1,895	3.17	80.5	3.77	10	0	0.00	0.0	0.00
Hypogene	INF	4.00	8	498	4.39	92.5	5.04	10	0	0.00	0.0	0.00
Hypogene	INF	5.00	8	307	4.76	94.5	5.41	10	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	INF	0.25	8	7,477	1.96	76.3	2.58	10	7,323	2.56	16.5	2.59
Total	INF	0.50	8	7,477	1.96	76.3	2.58	10	6,323	2.91	18.3	2.94
Total	INF	0.75	8	7,477	1.96	76.3	2.58	10	4,969	3.55	20.7	3.57
Total	INF	1.00	8	7,477	1.96	76.3	2.58	10	4,757	3.68	21.0	3.69
Total	INF	1.25	8	7,477	1.96	76.3	2.58	10	4,722	3.70	21.0	3.71
Total	INF	1.50	8	7,477	1.96	76.3	2.58	10	4,701	3.71	21.1	3.72
Total	INF	2.00	8	5,207	2.30	78.6	2.92	10	4,363	3.86	21.8	3.87
Total	INF	3.00	8	1,895	3.17	80.5	3.77	10	3,275	4.32	24.6	4.34
Total	INF	4.00	8	498	4.39	92.5	5.04	10	2,302	4.65	26.4	4.67
Total	INF	5.00	8	307	4.76	94.5	5.41	10	526	5.00	29.0	5.02

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	11	31,367	0.77	41.0	1.12	13	8,037	1.24	83.6	1.97
Oxide	IND	0.50	11	18,339	1.14	58.9	1.64	13	7,136	1.37	91.8	2.17
Oxide	IND	0.75	11	10,908	1.64	82.8	2.34	13	6,026	1.54	104.4	2.45
Oxide	IND	1.00	11	8,798	1.88	96.5	2.69	13	5,409	1.66	111.6	2.63
Oxide	IND	1.25	11	6,807	2.18	114.6	3.15	13	4,599	1.87	119.0	2.89
Oxide	IND	1.50	11	5,222	2.52	137.7	3.69	13	3,917	2.05	128.8	3.16
Oxide	IND	2.00	11	2,716	3.75	205.5	5.50	13	2,291	2.87	154.0	4.18
Oxide	IND	3.00	11	1,624	5.15	292.5	7.65	13	1,045	4.42	241.6	6.47
Oxide	IND	4.00	11	1,371	5.57	332.1	8.42	13	960	4.59	251.0	6.72
Oxide	IND	5.00	11	1,132	6.01	381.6	9.30	13	774	4.88	277.8	7.25

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	11	72,616	2.22	42.9	2.51	13	0	0.00	0.0	0.00
Hypogene	IND	0.50	11	59,846	2.63	50.2	2.97	13	0	0.00	0.0	0.00
Hypogene	IND	0.75	11	52,834	2.91	55.0	3.28	13	0	0.00	0.0	0.00
Hypogene	IND	1.00	11	46,624	3.21	59.7	3.61	13	0	0.00	0.0	0.00
Hypogene	IND	1.25	11	42,661	3.42	62.7	3.84	13	0	0.00	0.0	0.00
Hypogene	IND	1.50	11	38,822	3.65	66.0	4.08	13	0	0.00	0.0	0.00
Hypogene	IND	2.00	11	31,915	4.10	73.8	4.59	13	0	0.00	0.0	0.00
Hypogene	IND	3.00	11	20,947	5.18	81.8	5.69	13	0	0.00	0.0	0.00
Hypogene	IND	4.00	11	13,851	6.23	97.2	6.83	13	0	0.00	0.0	0.00
Hypogene	IND	5.00	11	8,621	7.48	118.6	8.22	13	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	IND	0.25	11	103,983	1.78	42.3	2.09	13	8,037	1.24	83.6	1.97
Total	IND	0.50	11	78,185	2.28	52.2	2.66	13	7,136	1.37	91.8	2.17
Total	IND	0.75	11	63,743	2.70	59.8	3.12	13	6,026	1.54	104.4	2.45
Total	IND	1.00	11	55,422	3.00	65.5	3.46	13	5,409	1.66	111.6	2.63
Total	IND	1.25	11	49,468	3.25	69.9	3.74	13	4,599	1.87	119.0	2.89
Total	IND	1.50	11	44,044	3.51	74.5	4.04	13	3,917	2.05	128.8	3.16
Total	IND	2.00	11	34,631	4.07	84.1	4.66	13	2,291	2.87	154.0	4.18
Total	IND	3.00	11	22,572	5.18	96.9	5.83	13	1,045	4.42	241.6	6.47
Total	IND	4.00	11	15,221	6.17	118.4	6.98	13	960	4.59	251.0	6.72
Total	IND	5.00	11	9,752	7.31	149.2	8.34	13	774	4.88	277.8	7.25

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	11	37,465	0.65	23.9	0.84	13	15,977	1.27	47.8	1.66
Oxide	INF	0.50	11	17,244	1.16	32.8	1.41	13	15,466	1.30	48.7	1.70
Oxide	INF	0.75	11	10,727	1.64	36.7	1.91	13	14,775	1.34	50.0	1.75
Oxide	INF	1.00	11	8,953	1.86	37.5	2.12	13	13,041	1.44	52.9	1.86
Oxide	INF	1.25	11	7,061	2.13	37.7	2.38	13	9,740	1.70	52.8	2.11
Oxide	INF	1.50	11	4,473	2.75	36.3	2.95	13	7,458	1.97	50.1	2.34
Oxide	INF	2.00	11	2,124	4.43	21.0	4.41	13	4,527	2.51	38.3	2.74
Oxide	INF	3.00	11	1,931	4.63	20.0	4.59	13	712	5.15	24.4	5.12
Oxide	INF	4.00	11	1,570	4.86	21.2	4.82	13	508	5.86	24.6	5.80
Oxide	INF	5.00	11	360	5.73	37.3	5.79	13	365	6.36	25.0	6.28

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	11	18,225	1.53	30.8	1.74	13	0	0.00	0.0	0.00
Hypogene	INF	0.50	11	14,452	1.84	36.8	2.09	13	0	0.00	0.0	0.00
Hypogene	INF	0.75	11	12,106	2.09	41.7	2.38	13	0	0.00	0.0	0.00
Hypogene	INF	1.00	11	9,961	2.39	46.6	2.71	13	0	0.00	0.0	0.00
Hypogene	INF	1.25	11	8,371	2.67	50.4	3.01	13	0	0.00	0.0	0.00
Hypogene	INF	1.50	11	7,141	2.93	54.4	3.29	13	0	0.00	0.0	0.00
Hypogene	INF	2.00	11	5,348	3.38	64.0	3.81	13	0	0.00	0.0	0.00
Hypogene	INF	3.00	11	3,141	4.31	72.3	4.77	13	0	0.00	0.0	0.00
Hypogene	INF	4.00	11	1,696	5.35	83.0	5.86	13	0	0.00	0.0	0.00
Hypogene	INF	5.00	11	1,047	5.83	115.3	6.62	13	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	INF	0.25	11	55,690	0.94	26.2	1.14	13	15,977	1.27	47.8	1.66
Total	INF	0.50	11	31,696	1.47	34.6	1.72	13	15,466	1.30	48.7	1.70
Total	INF	0.75	11	22,833	1.88	39.4	2.16	13	14,775	1.34	50.0	1.75
Total	INF	1.00	11	18,914	2.14	42.3	2.43	13	13,041	1.44	52.9	1.86
Total	INF	1.25	11	15,432	2.42	44.6	2.72	13	9,740	1.70	52.8	2.11
Total	INF	1.50	11	11,615	2.86	47.4	3.16	13	7,458	1.97	50.1	2.34
Total	INF	2.00	11	7,472	3.68	51.8	3.98	13	4,527	2.51	38.3	2.74
Total	INF	3.00	11	5,071	4.43	52.4	4.70	13	712	5.15	24.4	5.12
Total	INF	4.00	11	3,267	5.11	53.3	5.36	13	508	5.86	24.6	5.80
Total	INF	5.00	11	1,407	5.80	95.3	6.41	13	365	6.36	25.0	6.28

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	15	651	27.70	1946.9	44.63	16	1,167	1.29	116.9	2.33
Oxide	IND	0.50	15	651	27.70	1946.9	44.63	16	978	1.48	137.0	2.69
Oxide	IND	0.75	15	651	27.70	1946.9	44.63	16	959	1.50	139.2	2.73
Oxide	IND	1.00	15	651	27.70	1946.9	44.63	16	919	1.54	144.0	2.81
Oxide	IND	1.25	15	548	32.75	2303.1	52.77	16	718	1.70	178.7	3.30
Oxide	IND	1.50	15	548	32.75	2303.1	52.77	16	637	1.80	193.6	3.53
Oxide	IND	2.00	15	548	32.75	2303.1	52.77	16	449	2.01	249.4	4.26
Oxide	IND	3.00	15	548	32.75	2303.1	52.77	16	305	2.44	303.1	5.17
Oxide	IND	4.00	15	548	32.75	2303.1	52.77	16	272	2.53	314.2	5.36
Oxide	IND	5.00	15	548	32.75	2303.1	52.77	16	166	2.77	343.3	5.86

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	15	40,146	6.15	72.8	6.53	16	31,531	3.38	24.2	3.44
Hypogene	IND	0.50	15	35,330	6.96	80.8	7.38	16	29,523	3.58	25.6	3.65
Hypogene	IND	0.75	15	31,568	7.74	88.2	8.18	16	27,348	3.82	27.3	3.89
Hypogene	IND	1.00	15	26,721	9.04	98.2	9.51	16	25,286	4.06	29.1	4.13
Hypogene	IND	1.25	15	24,385	9.83	103.4	10.31	16	23,750	4.25	30.5	4.33
Hypogene	IND	1.50	15	22,821	10.43	107.6	10.92	16	21,785	4.51	32.4	4.59
Hypogene	IND	2.00	15	20,613	11.39	115.2	11.91	16	17,180	5.25	38.5	5.35
Hypogene	IND	3.00	15	18,292	12.57	123.6	13.11	16	10,983	6.82	55.1	7.00
Hypogene	IND	4.00	15	16,542	13.58	130.4	14.12	16	7,295	8.53	75.8	8.82
Hypogene	IND	5.00	15	15,291	14.38	133.7	14.92	16	5,303	10.05	96.2	10.45

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	IND	0.25	15	40,797	6.50	102.7	7.14	16	32,698	3.30	27.5	3.40
Total	IND	0.50	15	35,981	7.34	114.5	8.05	16	30,501	3.52	29.2	3.62
Total	IND	0.75	15	32,219	8.14	125.7	8.91	16	28,307	3.74	31.1	3.85
Total	IND	1.00	15	27,372	9.48	142.1	10.34	16	26,205	3.97	33.2	4.09
Total	IND	1.25	15	24,933	10.33	151.8	11.25	16	24,469	4.18	34.9	4.30
Total	IND	1.50	15	23,369	10.96	159.1	11.91	16	22,421	4.44	37.0	4.56
Total	IND	2.00	15	21,162	11.95	171.9	12.97	16	17,630	5.17	43.8	5.32
Total	IND	3.00	15	18,840	13.16	187.0	14.26	16	11,287	6.70	61.8	6.95
Total	IND	4.00	15	17,091	14.19	200.1	15.36	16	7,567	8.32	84.3	8.70
Total	IND	5.00	15	15,839	15.01	208.8	16.23	16	5,469	9.83	103.7	10.31

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	15	1,316	14.97	169.6	15.82	16	3,556	1.38	13.1	1.44
Oxide	INF	0.50	15	1,316	14.97	169.6	15.82	16	3,454	1.41	13.1	1.47
Oxide	INF	0.75	15	1,316	14.97	169.6	15.82	16	2,935	1.57	12.9	1.61
Oxide	INF	1.00	15	1,316	14.97	169.6	15.82	16	2,520	1.68	14.3	1.73
Oxide	INF	1.25	15	1,316	14.97	169.6	15.82	16	1,710	1.92	19.3	2.01
Oxide	INF	1.50	15	1,316	14.97	169.6	15.82	16	1,263	2.12	24.8	2.25
Oxide	INF	2.00	15	1,316	14.97	169.6	15.82	16	1,087	2.18	25.0	2.30
Oxide	INF	3.00	15	1,316	14.97	169.6	15.82	16	0	0.00	0.0	0.00
Oxide	INF	4.00	15	1,316	14.97	169.6	15.82	16	0	0.00	0.0	0.00
Oxide	INF	5.00	15	1,316	14.97	169.6	15.82	16	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	15	18,991	4.96	64.8	5.32	16	26,005	6.18	13.4	5.99
Hypogene	INF	0.50	15	16,783	5.57	71.9	5.97	16	25,513	6.29	13.6	6.10
Hypogene	INF	0.75	15	14,071	6.55	82.6	7.00	16	25,092	6.38	13.8	6.19
Hypogene	INF	1.00	15	12,263	7.41	91.5	7.90	16	24,864	6.43	13.9	6.24
Hypogene	INF	1.25	15	11,234	8.01	97.3	8.53	16	24,281	6.56	14.2	6.37
Hypogene	INF	1.50	15	10,638	8.39	101.5	8.93	16	23,495	6.73	14.5	6.53
Hypogene	INF	2.00	15	9,909	8.89	107.2	9.45	16	22,388	6.98	15.0	6.77
Hypogene	INF	3.00	15	8,967	9.58	115.0	10.19	16	18,723	7.84	16.5	7.60
Hypogene	INF	4.00	15	7,818	10.51	125.5	11.17	16	15,789	8.63	17.8	8.37
Hypogene	INF	5.00	15	6,718	11.63	128.1	12.26	16	13,297	9.39	19.0	9.10

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	INF	0.25	15	20,307	5.61	71.5	6.00	16	29,561	5.60	13.3	5.45
Total	INF	0.50	15	18,098	6.26	79.0	6.69	16	28,966	5.71	13.5	5.55
Total	INF	0.75	15	15,386	7.27	90.0	7.75	16	28,028	5.88	13.7	5.71
Total	INF	1.00	15	13,579	8.15	99.1	8.67	16	27,384	6.00	13.9	5.83
Total	INF	1.25	15	12,549	8.74	104.9	9.29	16	25,991	6.26	14.5	6.08
Total	INF	1.50	15	11,953	9.12	109.0	9.69	16	24,758	6.50	15.0	6.31
Total	INF	2.00	15	11,225	9.60	114.6	10.20	16	23,475	6.75	15.4	6.56
Total	INF	3.00	15	10,282	10.27	122.0	10.91	16	18,723	7.84	16.5	7.60
Total	INF	4.00	15	9,134	11.15	131.9	11.84	16	15,789	8.63	17.8	8.37
Total	INF	5.00	15	8,034	12.18	134.9	12.84	16	13,297	9.39	19.0	9.10

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	0.50	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	0.75	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	1.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	1.25	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	1.50	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	2.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	3.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	4.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	5.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	20	46,545	3.25	163.5	4.63	25	9,566	2.39	154.3	3.72
Hypogene	IND	0.50	20	39,872	3.76	187.9	5.34	25	9,548	2.40	154.6	3.73
Hypogene	IND	0.75	20	33,984	4.34	216.2	6.16	25	8,981	2.52	163.1	3.92
Hypogene	IND	1.00	20	29,145	4.96	246.0	7.03	25	8,794	2.56	165.8	3.99
Hypogene	IND	1.25	20	23,269	6.03	297.1	8.52	25	8,519	2.62	169.3	4.08
Hypogene	IND	1.50	20	20,150	6.80	337.4	9.63	25	8,331	2.65	172.4	4.14
Hypogene	IND	2.00	20	16,650	7.95	397.3	11.29	25	7,852	2.76	177.1	4.29
Hypogene	IND	3.00	20	13,500	9.38	473.4	13.36	25	5,735	3.30	188.9	4.92
Hypogene	IND	4.00	20	11,323	10.69	543.4	15.27	25	4,000	3.86	200.5	5.56
Hypogene	IND	5.00	20	9,169	12.41	640.2	17.81	25	2,800	4.01	233.5	6.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	IND	0.25	20	46,545	3.25	163.5	4.63	25	9,566	2.39	154.3	3.72
Total	IND	0.50	20	39,872	3.76	187.9	5.34	25	9,548	2.40	154.6	3.73
Total	IND	0.75	20	33,984	4.34	216.2	6.16	25	8,981	2.52	163.1	3.92
Total	IND	1.00	20	29,145	4.96	246.0	7.03	25	8,794	2.56	165.8	3.99
Total	IND	1.25	20	23,269	6.03	297.1	8.52	25	8,519	2.62	169.3	4.08
Total	IND	1.50	20	20,150	6.80	337.4	9.63	25	8,331	2.65	172.4	4.14
Total	IND	2.00	20	16,650	7.95	397.3	11.29	25	7,852	2.76	177.1	4.29
Total	IND	3.00	20	13,500	9.38	473.4	13.36	25	5,735	3.30	188.9	4.92
Total	IND	4.00	20	11,323	10.69	543.4	15.27	25	4,000	3.86	200.5	5.56
Total	IND	5.00	20	9,169	12.41	640.2	17.81	25	2,800	4.01	233.5	6.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	0.50	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	0.75	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	1.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	1.25	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	1.50	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	2.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	3.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	4.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	5.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	20	22,696	2.50	76.7	3.09	25	6,198	2.10	169.8	3.59
Hypogene	INF	0.50	20	21,289	2.65	80.7	3.27	25	6,198	2.10	169.8	3.59
Hypogene	INF	0.75	20	18,333	3.00	90.2	3.70	25	6,198	2.10	169.8	3.59
Hypogene	INF	1.00	20	16,010	3.35	98.2	4.11	25	5,860	2.17	178.6	3.74
Hypogene	INF	1.25	20	14,033	3.71	106.7	4.53	25	5,524	2.25	187.5	3.90
Hypogene	INF	1.50	20	13,080	3.91	110.7	4.75	25	5,302	2.30	193.5	4.01
Hypogene	INF	2.00	20	11,818	4.19	116.7	5.08	25	5,009	2.38	200.1	4.14
Hypogene	INF	3.00	20	9,307	4.80	129.9	5.78	25	3,794	2.72	218.6	4.64
Hypogene	INF	4.00	20	7,161	5.37	145.2	6.47	25	2,058	3.45	258.1	5.71
Hypogene	INF	5.00	20	5,032	6.04	164.9	7.29	25	1,407	3.31	329.1	6.24

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	INF	0.25	20	22,696	2.50	76.7	3.09	25	6,198	2.10	169.8	3.59
Total	INF	0.50	20	21,289	2.65	80.7	3.27	25	6,198	2.10	169.8	3.59
Total	INF	0.75	20	18,333	3.00	90.2	3.70	25	6,198	2.10	169.8	3.59
Total	INF	1.00	20	16,010	3.35	98.2	4.11	25	5,860	2.17	178.6	3.74
Total	INF	1.25	20	14,033	3.71	106.7	4.53	25	5,524	2.25	187.5	3.90
Total	INF	1.50	20	13,080	3.91	110.7	4.75	25	5,302	2.30	193.5	4.01
Total	INF	2.00	20	11,818	4.19	116.7	5.08	25	5,009	2.38	200.1	4.14
Total	INF	3.00	20	9,307	4.80	129.9	5.78	25	3,794	2.72	218.6	4.64
Total	INF	4.00	20	7,161	5.37	145.2	6.47	25	2,058	3.45	258.1	5.71
Total	INF	5.00	20	5,032	6.04	164.9	7.29	25	1,407	3.31	329.1	6.24

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	0.50	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	0.75	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	1.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	1.25	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	1.50	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	2.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	3.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	4.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	5.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	0.50	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	0.75	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	1.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	1.25	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	1.50	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	2.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	3.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	4.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	5.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	IND	0.25	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	0.50	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	0.75	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	1.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	1.25	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	1.50	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	2.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	3.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	4.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	5.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	Pancho	41,959	0.71	31.3	0.97	F1	2,791	0.33	18.1	0.48
Oxide	INF	0.50	Pancho	24,603	0.99	47.4	1.38	F1	703	0.75	25.4	0.95
Oxide	INF	0.75	Pancho	17,958	1.15	61.4	1.67	F1	520	0.93	21.3	1.08
Oxide	INF	1.00	Pancho	13,371	1.32	74.5	1.95	F1	327	1.00	21.9	1.15
Oxide	INF	1.25	Pancho	12,716	1.35	75.8	1.99	F1	10	1.34	3.1	1.30
Oxide	INF	1.50	Pancho	4,773	2.30	99.4	3.12	F1	0	0.00	0.0	0.00
Oxide	INF	2.00	Pancho	4,229	2.43	104.4	3.29	F1	0	0.00	0.0	0.00
Oxide	INF	3.00	Pancho	2,098	3.03	128.9	4.10	F1	0	0.00	0.0	0.00
Oxide	INF	4.00	Pancho	1,297	3.29	139.0	4.44	F1	0	0.00	0.0	0.00
Oxide	INF	5.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	Pancho	440,130	1.28	36.0	1.56	F1	3,028	0.59	41.0	0.95
Hypogene	INF	0.50	Pancho	288,434	1.81	49.8	2.19	F1	866	1.60	97.0	2.43
Hypogene	INF	0.75	Pancho	216,903	2.24	61.1	2.70	F1	744	1.83	104.6	2.72
Hypogene	INF	1.00	Pancho	163,511	2.77	71.6	3.30	F1	575	2.29	114.2	3.25
Hypogene	INF	1.25	Pancho	133,644	3.18	81.4	3.79	F1	426	2.99	125.4	4.02
Hypogene	INF	1.50	Pancho	112,542	3.56	92.0	4.24	F1	370	3.36	131.7	4.43
Hypogene	INF	2.00	Pancho	73,981	4.70	117.3	5.57	F1	360	3.43	133.0	4.51
Hypogene	INF	3.00	Pancho	33,063	7.95	199.6	9.43	F1	299	3.82	138.6	4.93
Hypogene	INF	4.00	Pancho	19,065	11.56	303.8	13.84	F1	277	3.93	140.7	5.06
Hypogene	INF	5.00	Pancho	11,731	16.40	443.8	19.75	F1	214	4.05	142.9	5.19

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	INF	0.25	Pancho	482,089	1.23	35.6	1.51	F1	5,819	0.46	30.0	0.72
Total	INF	0.50	Pancho	313,037	1.75	49.6	2.12	F1	1,569	1.22	64.9	1.77
Total	INF	0.75	Pancho	234,861	2.16	61.1	2.63	F1	1,264	1.46	70.3	2.05
Total	INF	1.00	Pancho	176,882	2.66	71.8	3.20	F1	902	1.82	80.8	2.49
Total	INF	1.25	Pancho	146,360	3.02	80.9	3.63	F1	437	2.95	122.5	3.96
Total	INF	1.50	Pancho	117,314	3.51	92.3	4.20	F1	370	3.36	131.7	4.43
Total	INF	2.00	Pancho	78,210	4.57	116.6	5.44	F1	360	3.43	133.0	4.51
Total	INF	3.00	Pancho	35,161	7.66	195.4	9.11	F1	299	3.82	138.6	4.93
Total	INF	4.00	Pancho	20,361	11.04	293.3	13.24	F1	277	3.93	140.7	5.06
Total	INF	5.00	Pancho	11,731	16.40	443.8	19.75	F1	214	4.05	142.9	5.19

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	40	0	0.00	0.0	0.00
Oxide	IND	0.50	40	0	0.00	0.0	0.00
Oxide	IND	0.75	40	0	0.00	0.0	0.00
Oxide	IND	1.00	40	0	0.00	0.0	0.00
Oxide	IND	1.25	40	0	0.00	0.0	0.00
Oxide	IND	1.50	40	0	0.00	0.0	0.00
Oxide	IND	2.00	40	0	0.00	0.0	0.00
Oxide	IND	3.00	40	0	0.00	0.0	0.00
Oxide	IND	4.00	40	0	0.00	0.0	0.00
Oxide	IND	5.00	40	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	40	0	0.00	0.0	0.00
Hypogene	IND	0.50	40	0	0.00	0.0	0.00
Hypogene	IND	0.75	40	0	0.00	0.0	0.00
Hypogene	IND	1.00	40	0	0.00	0.0	0.00
Hypogene	IND	1.25	40	0	0.00	0.0	0.00
Hypogene	IND	1.50	40	0	0.00	0.0	0.00
Hypogene	IND	2.00	40	0	0.00	0.0	0.00
Hypogene	IND	3.00	40	0	0.00	0.0	0.00
Hypogene	IND	4.00	40	0	0.00	0.0	0.00
Hypogene	IND	5.00	40	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)
Total	IND	0.25	40	0	0.00	0.0	0.00
Total	IND	0.50	40	0	0.00	0.0	0.00
Total	IND	0.75	40	0	0.00	0.0	0.00
Total	IND	1.00	40	0	0.00	0.0	0.00
Total	IND	1.25	40	0	0.00	0.0	0.00
Total	IND	1.50	40	0	0.00	0.0	0.00
Total	IND	2.00	40	0	0.00	0.0	0.00
Total	IND	3.00	40	0	0.00	0.0	0.00
Total	IND	4.00	40	0	0.00	0.0	0.00
Total	IND	5.00	40	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	40	2,223,257	0.42	19.0	0.58
Oxide	INF	0.50	40	765,947	0.81	27.6	1.03
Oxide	INF	0.75	40	380,416	1.21	32.7	1.46
Oxide	INF	1.00	40	237,935	1.56	36.1	1.82
Oxide	INF	1.25	40	150,059	1.95	40.3	2.23
Oxide	INF	1.50	40	117,896	2.16	44.9	2.47
Oxide	INF	2.00	40	65,302	2.70	55.7	3.09
Oxide	INF	3.00	40	17,769	4.11	102.4	4.87
Oxide	INF	4.00	40	8,611	5.28	152.2	6.45
Oxide	INF	5.00	40	3,059	7.03	311.3	9.60

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	40	2,703,211	0.43	19.6	0.60
Hypogene	INF	0.50	40	963,769	0.78	33.6	1.06
Hypogene	INF	0.75	40	547,118	1.08	39.5	1.40
Hypogene	INF	1.00	40	333,202	1.37	47.6	1.74
Hypogene	INF	1.25	40	216,930	1.71	48.5	2.08
Hypogene	INF	1.50	40	144,495	2.06	51.8	2.44
Hypogene	INF	2.00	40	80,528	2.59	58.1	3.01
Hypogene	INF	3.00	40	27,053	3.59	104.9	4.40
Hypogene	INF	4.00	40	13,670	4.08	166.0	5.44
Hypogene	INF	5.00	40	4,898	4.22	363.8	7.43

OXID	RESCAT	Cut-off	MZON	TONNES	Au	Ag	AuEq
		AuEq			(g/t)	(g/t)	(g/t)
Total	INF	0.25	40	4,926,468	0.43	19.3	0.59
Total	INF	0.50	40	1,729,715	0.79	30.9	1.04
Total	INF	0.75	40	927,534	1.13	36.7	1.42
Total	INF	1.00	40	571,136	1.44	42.8	1.78
Total	INF	1.25	40	366,988	1.81	45.2	2.14
Total	INF	1.50	40	262,391	2.10	48.7	2.46
Total	INF	2.00	40	145,830	2.64	57.0	3.05
Total	INF	3.00	40	44,821	3.80	103.9	4.59
Total	INF	4.00	40	22,281	4.55	160.7	5.83
Total	INF	5.00	40	7,957	5.30	343.6	8.27

Appendix 7

La Manchuria Mineral Resource Estimate using Un-Capped Data

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	Au	Ag	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)	(oz)	(oz)	(oz)
Oxide	IND	0.25	Total	215,914	1.50	139.5	2.74	10,403	968,245	18,990
Oxide	IND	0.50	Total	175,158	1.79	168.8	3.29	10,064	950,502	18,500
Oxide	IND	0.75	Total	145,066	2.06	199.9	3.84	9,615	932,496	17,905
Oxide	IND	1.00	Total	126,307	2.27	226.1	4.28	9,205	918,098	17,380
Oxide	IND	1.25	Total	111,503	2.45	251.8	4.70	8,798	902,755	16,849
Oxide	IND	1.50	Total	97,231	2.66	282.8	5.19	8,323	883,915	16,220
Oxide	IND	2.00	Total	78,815	2.99	335.1	5.99	7,577	849,219	15,185
Oxide	IND	3.00	Total	53,840	3.63	445.5	7.64	6,278	771,101	13,217
Oxide	IND	4.00	Total	40,103	4.25	534.0	9.06	5,480	688,541	11,682
Oxide	IND	5.00	Total	30,006	4.96	627.5	10.61	4,785	605,321	10,239

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	Au	Ag	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)	(oz)	(oz)	(oz)
Hypogene	IND	0.25	Total	389,108	3.66	169.6	5.07	45,791	2,121,107	63,451
Hypogene	IND	0.50	Total	332,092	4.25	196.3	5.88	45,346	2,095,953	62,792
Hypogene	IND	0.75	Total	291,752	4.78	220.1	6.61	44,796	2,064,920	61,978
Hypogene	IND	1.00	Total	257,232	5.34	245.2	7.38	44,154	2,027,788	61,019
Hypogene	IND	1.25	Total	228,923	5.91	270.0	8.15	43,485	1,987,318	60,002
Hypogene	IND	1.50	Total	207,055	6.44	292.7	8.87	42,853	1,948,789	59,040
Hypogene	IND	2.00	Total	176,932	7.33	331.2	10.08	41,722	1,884,194	57,357
Hypogene	IND	3.00	Total	132,019	9.27	410.7	12.67	39,343	1,743,219	53,772
Hypogene	IND	4.00	Total	103,789	11.15	487.1	15.17	37,201	1,625,261	50,628
Hypogene	IND	5.00	Total	83,418	13.09	568.7	17.78	35,105	1,525,321	47,696

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	Au	Ag	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)	(oz)	(oz)	(oz)
Total	IND	0.25	Total	605,022	2.89	158.8	4.24	56,194	3,089,352	82,441
Total	IND	0.50	Total	507,250	3.40	186.8	4.98	55,410	3,046,455	81,292
Total	IND	0.75	Total	436,819	3.87	213.4	5.69	54,412	2,997,416	79,883
Total	IND	1.00	Total	383,539	4.33	238.9	6.36	53,359	2,945,885	78,399
Total	IND	1.25	Total	340,426	4.78	264.1	7.02	52,283	2,890,072	76,851
Total	IND	1.50	Total	304,287	5.23	289.6	7.69	51,176	2,832,704	75,260
Total	IND	2.00	Total	255,747	6.00	332.4	8.82	49,298	2,733,413	72,542
Total	IND	3.00	Total	185,859	7.63	420.8	11.21	45,622	2,514,320	66,989
Total	IND	4.00	Total	143,891	9.23	500.1	13.47	42,682	2,313,803	62,310
Total	IND	5.00	Total	113,424	10.94	584.3	15.89	39,890	2,130,642	57,935

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	Au	Ag	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)	(oz)	(oz)	(oz)
Oxide	INF	0.25	Total	2,415,529	0.53	28.9	0.78	41,450	2,240,652	60,451
Oxide	INF	0.50	Total	918,787	1.04	52.3	1.48	30,762	1,544,414	43,750
Oxide	INF	0.75	Total	511,034	1.54	76.2	2.18	25,354	1,251,226	35,854
Oxide	INF	1.00	Total	355,940	1.94	97.0	2.76	22,255	1,109,868	31,581
Oxide	INF	1.25	Total	253,171	2.38	123.8	3.43	19,400	1,007,873	27,910
Oxide	INF	1.50	Total	202,568	2.71	145.7	3.95	17,667	949,008	25,710
Oxide	INF	2.00	Total	146,136	3.22	186.7	4.82	15,132	877,283	22,626
Oxide	INF	3.00	Total	87,820	4.06	270.5	6.40	11,468	763,857	18,079
Oxide	INF	4.00	Total	54,190	5.15	359.7	8.27	8,964	626,673	14,410
Oxide	INF	5.00	Total	37,765	6.16	433.6	9.93	7,483	526,432	12,060

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	Au	Ag	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)	(oz)	(oz)	(oz)
Hypogene	INF	0.25	Total	3,543,276	1.00	43.3	1.36	114,227	4,933,837	154,920
Hypogene	INF	0.50	Total	1,626,628	1.90	80.2	2.56	99,263	4,194,667	133,752
Hypogene	INF	0.75	Total	1,126,765	2.57	104.4	3.42	92,958	3,780,979	123,872
Hypogene	INF	1.00	Total	817,031	3.31	132.7	4.39	86,912	3,485,565	115,350
Hypogene	INF	1.25	Total	657,113	3.94	153.6	5.19	83,244	3,245,388	109,606
Hypogene	INF	1.50	Total	526,243	4.70	177.6	6.14	79,600	3,004,911	103,882
Hypogene	INF	2.00	Total	389,705	5.97	213.9	7.69	74,835	2,680,419	96,303
Hypogene	INF	3.00	Total	250,876	8.41	278.6	10.61	67,801	2,247,277	85,547
Hypogene	INF	4.00	Total	193,798	10.21	321.0	12.72	63,592	2,000,216	79,225
Hypogene	INF	5.00	Total	151,180	12.16	368.8	15.02	59,125	1,792,388	73,027

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	Au	Ag	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)	(oz)	(oz)	(oz)
Total	INF	0.25	Total	5,958,805	0.81	37.4	1.12	155,676	7,174,490	215,371
Total	INF	0.50	Total	2,545,415	1.59	70.1	2.17	130,025	5,739,080	177,502
Total	INF	0.75	Total	1,637,799	2.25	95.6	3.03	118,312	5,032,206	159,726
Total	INF	1.00	Total	1,172,971	2.89	121.9	3.90	109,167	4,595,433	146,931
Total	INF	1.25	Total	910,284	3.51	145.3	4.70	102,644	4,253,261	137,515
Total	INF	1.50	Total	728,812	4.15	168.7	5.53	97,267	3,953,919	129,592
Total	INF	2.00	Total	535,840	5.22	206.5	6.90	89,966	3,557,702	118,930
Total	INF	3.00	Total	338,696	7.28	276.5	9.52	79,269	3,011,134	103,626
Total	INF	4.00	Total	247,987	9.10	329.5	11.74	72,556	2,626,889	93,635
Total	INF	5.00	Total	188,945	10.96	381.7	14.01	66,608	2,318,820	85,087

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	1	109,474	1.42	206.9	3.29	2	12,082	1.38	70.1	1.97
Oxide	IND	0.50	1	92,119	1.63	243.6	3.84	2	11,311	1.46	74.1	2.08
Oxide	IND	0.75	1	80,709	1.79	275.8	4.30	2	10,218	1.56	80.2	2.23
Oxide	IND	1.00	1	72,557	1.92	304.2	4.68	2	9,081	1.67	87.6	2.41
Oxide	IND	1.25	1	64,896	2.03	336.9	5.10	2	8,718	1.70	89.5	2.46
Oxide	IND	1.50	1	58,163	2.15	371.2	5.53	2	7,266	1.85	98.0	2.68
Oxide	IND	2.00	1	48,686	2.33	431.3	6.27	2	5,233	2.03	117.4	3.03
Oxide	IND	3.00	1	35,043	2.67	555.5	7.76	2	2,355	2.46	161.4	3.86
Oxide	IND	4.00	1	26,575	3.03	664.0	9.12	2	871	2.90	190.5	4.55
Oxide	IND	5.00	1	21,019	3.42	755.8	10.36	2	161	3.13	245.1	5.28

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	1	19,802	0.80	107.6	1.77	2	10,031	1.01	73.0	1.64
Hypogene	IND	0.50	1	13,205	1.07	155.1	2.48	2	8,864	1.11	80.9	1.81
Hypogene	IND	0.75	1	8,978	1.38	216.9	3.35	2	7,981	1.18	87.4	1.94
Hypogene	IND	1.00	1	6,323	1.70	295.1	4.39	2	6,935	1.25	97.2	2.10
Hypogene	IND	1.25	1	4,760	1.99	380.4	5.47	2	4,868	1.40	126.6	2.52
Hypogene	IND	1.50	1	4,249	2.14	417.5	5.96	2	3,288	1.56	169.2	3.07
Hypogene	IND	2.00	1	3,799	2.31	453.8	6.47	2	2,173	1.69	228.0	3.75
Hypogene	IND	3.00	1	3,340	2.50	492.5	7.00	2	1,463	1.88	276.3	4.39
Hypogene	IND	4.00	1	2,769	2.65	554.2	7.73	2	579	2.13	375.5	5.55
Hypogene	IND	5.00	1	2,406	2.82	591.9	8.25	2	355	2.32	426.4	6.21

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	IND	0.25	1	129,275	1.32	191.7	3.06	2	22,113	1.21	71.4	1.82
Total	IND	0.50	1	105,323	1.56	232.5	3.67	2	20,175	1.30	77.1	1.96
Total	IND	0.75	1	89,688	1.75	269.9	4.20	2	18,199	1.39	83.3	2.11
Total	IND	1.00	1	78,880	1.90	303.5	4.66	2	16,016	1.49	91.8	2.27
Total	IND	1.25	1	69,656	2.03	339.9	5.13	2	13,586	1.59	102.8	2.48
Total	IND	1.50	1	62,412	2.15	374.4	5.56	2	10,554	1.76	120.1	2.80
Total	IND	2.00	1	52,485	2.33	432.9	6.29	2	7,406	1.93	149.8	3.24
Total	IND	3.00	1	38,383	2.65	550.0	7.69	2	3,818	2.24	205.4	4.06
Total	IND	4.00	1	29,344	2.99	653.6	8.99	2	1,449	2.59	264.4	4.95
Total	IND	5.00	1	23,425	3.36	739.0	10.14	2	516	2.57	369.8	5.92

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	1	46,623	1.01	147.7	2.35	2	5,815	2.20	52.2	2.58
Oxide	INF	0.50	1	42,281	1.09	161.3	2.56	2	5,815	2.20	52.2	2.58
Oxide	INF	0.75	1	38,222	1.17	175.6	2.76	2	5,645	2.25	53.2	2.64
Oxide	INF	1.00	1	34,614	1.23	189.7	2.96	2	5,436	2.31	54.4	2.71
Oxide	INF	1.25	1	26,269	1.34	240.1	3.53	2	5,436	2.31	54.4	2.71
Oxide	INF	1.50	1	20,923	1.43	291.2	4.09	2	5,103	2.41	54.2	2.79
Oxide	INF	2.00	1	16,300	1.50	355.5	4.77	2	4,071	2.60	60.5	3.04
Oxide	INF	3.00	1	12,718	1.60	414.3	5.41	2	2,326	3.00	80.8	3.61
Oxide	INF	4.00	1	7,279	1.73	549.2	6.81	2	285	3.55	94.4	4.26
Oxide	INF	5.00	1	4,382	1.90	701.3	8.40	2	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	1	100,237	0.66	32.2	0.93	2	13,837	0.81	74.4	1.47
Hypogene	INF	0.50	1	64,913	0.85	44.6	1.23	2	12,627	0.86	80.0	1.57
Hypogene	INF	0.75	1	43,470	1.06	56.4	1.53	2	11,142	0.91	88.5	1.70
Hypogene	INF	1.00	1	12,267	1.82	173.4	3.36	2	9,834	0.94	97.7	1.81
Hypogene	INF	1.25	1	8,911	2.14	231.6	4.21	2	6,683	0.94	131.5	2.13
Hypogene	INF	1.50	1	8,421	2.20	243.2	4.38	2	5,406	0.88	157.0	2.32
Hypogene	INF	2.00	1	8,067	2.26	249.5	4.49	2	2,812	0.77	223.5	2.84
Hypogene	INF	3.00	1	7,120	2.39	264.3	4.76	2	778	1.11	276.1	3.65
Hypogene	INF	4.00	1	2,616	1.88	539.2	6.85	2	164	1.91	344.7	5.05
Hypogene	INF	5.00	1	2,438	1.95	552.1	7.04	2	83	2.07	377.6	5.52

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	INF	0.25	1	146,860	0.77	68.8	1.38	2	19,652	1.22	67.8	1.80
Total	INF	0.50	1	107,195	0.95	90.6	1.75	2	18,442	1.28	71.3	1.89
Total	INF	0.75	1	81,692	1.11	112.2	2.11	2	16,787	1.36	76.7	2.01
Total	INF	1.00	1	46,881	1.39	185.4	3.06	2	15,270	1.43	82.3	2.13
Total	INF	1.25	1	35,180	1.54	238.0	3.71	2	12,119	1.56	96.9	2.39
Total	INF	1.50	1	29,344	1.65	277.4	4.18	2	10,510	1.62	107.1	2.55
Total	INF	2.00	1	24,367	1.75	320.4	4.68	2	6,883	1.86	127.1	2.96
Total	INF	3.00	1	19,838	1.88	360.5	5.18	2	3,104	2.52	129.7	3.62
Total	INF	4.00	1	9,895	1.77	546.6	6.82	2	449	2.95	185.9	4.55
Total	INF	5.00	1	6,820	1.92	648.0	7.91	2	83	2.07	377.6	5.52

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	5	23,754	2.35	22.6	2.44	7	21,419	0.93	90.3	1.73
Oxide	IND	0.50	5	19,989	2.74	25.2	2.84	7	17,114	1.11	109.0	2.08
Oxide	IND	0.75	5	16,291	3.24	28.2	3.34	7	13,248	1.31	133.7	2.50
Oxide	IND	1.00	5	12,757	3.93	30.8	4.02	7	10,677	1.48	158.0	2.90
Oxide	IND	1.25	5	10,513	4.57	32.3	4.65	7	9,256	1.60	174.9	3.17
Oxide	IND	1.50	5	8,856	5.21	33.5	5.26	7	8,159	1.69	192.2	3.41
Oxide	IND	2.00	5	7,354	5.95	34.1	5.98	7	6,806	1.82	214.2	3.74
Oxide	IND	3.00	5	4,202	8.74	29.8	8.58	7	4,346	2.05	265.2	4.44
Oxide	IND	4.00	5	3,758	9.37	31.0	9.19	7	2,620	2.10	324.4	5.05
Oxide	IND	5.00	5	2,843	10.94	37.6	10.74	7	1,169	2.36	369.4	5.71

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	5	7,231	0.87	62.4	1.41	7	136,881	2.76	218.9	4.68
Hypogene	IND	0.50	5	6,492	0.93	69.2	1.53	7	116,446	3.21	254.2	5.44
Hypogene	IND	0.75	5	4,132	1.22	95.6	2.05	7	101,966	3.62	285.7	6.13
Hypogene	IND	1.00	5	2,379	1.62	147.8	2.93	7	90,967	4.00	314.5	6.76
Hypogene	IND	1.25	5	1,779	1.89	186.6	3.55	7	81,538	4.41	343.3	7.41
Hypogene	IND	1.50	5	1,068	2.19	306.1	4.96	7	73,983	4.80	369.1	8.03
Hypogene	IND	2.00	5	765	2.41	423.4	6.27	7	62,536	5.54	416.5	9.19
Hypogene	IND	3.00	5	325	2.62	927.9	11.22	7	45,304	7.21	519.0	11.73
Hypogene	IND	4.00	5	254	3.01	1121.9	13.41	7	34,865	8.87	613.5	14.20
Hypogene	IND	5.00	5	215	3.34	1259.3	15.02	7	27,457	10.66	712.9	16.83

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	IND	0.25	5	30,985	2.00	31.9	2.20	7	158,299	2.51	201.5	4.28
Total	IND	0.50	5	26,481	2.29	36.0	2.52	7	133,560	2.94	235.6	5.01
Total	IND	0.75	5	20,423	2.83	41.8	3.08	7	115,214	3.35	268.3	5.71
Total	IND	1.00	5	15,136	3.57	49.2	3.85	7	101,645	3.74	298.0	6.36
Total	IND	1.25	5	12,292	4.18	54.6	4.49	7	90,794	4.12	326.1	6.98
Total	IND	1.50	5	9,924	4.88	62.8	5.23	7	82,142	4.49	351.6	7.57
Total	IND	2.00	5	8,119	5.62	70.8	6.00	7	69,343	5.18	396.7	8.65
Total	IND	3.00	5	4,527	8.30	94.3	8.77	7	49,650	6.76	496.7	11.10
Total	IND	4.00	5	4,012	8.96	100.1	9.46	7	37,485	8.40	593.3	13.56
Total	IND	5.00	5	3,058	10.40	123.6	11.05	7	28,626	10.32	698.9	16.37

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	5	13,059	4.42	24.9	4.43	7	14,905	1.02	140.7	2.29
Oxide	INF	0.50	5	11,688	4.90	26.6	4.90	7	12,085	1.18	170.5	2.72
Oxide	INF	0.75	5	10,928	5.20	27.5	5.20	7	9,554	1.38	209.8	3.29
Oxide	INF	1.00	5	10,216	5.52	27.6	5.50	7	8,767	1.46	225.0	3.50
Oxide	INF	1.25	5	9,272	5.99	27.4	5.95	7	8,597	1.48	228.4	3.55
Oxide	INF	1.50	5	8,386	6.49	28.1	6.43	7	8,307	1.51	233.3	3.63
Oxide	INF	2.00	5	7,423	7.13	29.2	7.04	7	7,473	1.56	250.5	3.84
Oxide	INF	3.00	5	6,385	7.95	26.7	7.80	7	6,854	1.60	259.8	3.96
Oxide	INF	4.00	5	6,118	8.15	27.0	8.00	7	3,105	1.80	277.4	4.32
Oxide	INF	5.00	5	4,479	9.43	31.6	9.25	7	63	1.66	399.0	5.33

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	5	19,849	1.26	82.3	1.97	7	73,247	1.64	217.8	3.61
Hypogene	INF	0.50	5	18,370	1.34	88.0	2.10	7	63,984	1.85	247.1	4.08
Hypogene	INF	0.75	5	14,907	1.56	102.5	2.44	7	58,517	1.99	267.1	4.40
Hypogene	INF	1.00	5	12,516	1.73	116.5	2.74	7	53,920	2.12	285.9	4.70
Hypogene	INF	1.25	5	11,825	1.77	122.8	2.84	7	49,362	2.26	306.1	5.03
Hypogene	INF	1.50	5	8,749	1.88	163.8	3.33	7	43,877	2.47	333.5	5.49
Hypogene	INF	2.00	5	3,197	2.26	429.6	6.19	7	36,566	2.81	379.3	6.24
Hypogene	INF	3.00	5	2,145	2.28	629.2	8.09	7	25,125	3.56	487.2	7.96
Hypogene	INF	4.00	5	1,926	2.26	686.8	8.61	7	17,451	4.52	600.3	9.94
Hypogene	INF	5.00	5	1,810	2.28	712.8	8.87	7	10,707	6.18	796.6	13.36

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	INF	0.25	5	32,908	2.51	59.5	2.95	7	88,153	1.54	204.7	3.38
Total	INF	0.50	5	30,057	2.72	64.1	3.19	7	76,069	1.74	234.9	3.86
Total	INF	0.75	5	25,835	3.10	70.8	3.61	7	68,072	1.90	259.1	4.24
Total	INF	1.00	5	22,732	3.43	76.6	3.98	7	62,687	2.03	277.4	4.53
Total	INF	1.25	5	21,097	3.62	80.9	4.20	7	57,959	2.15	294.6	4.81
Total	INF	1.50	5	17,134	4.14	97.4	4.85	7	52,185	2.32	317.6	5.19
Total	INF	2.00	5	10,621	5.66	149.8	6.79	7	44,039	2.60	357.4	5.83
Total	INF	3.00	5	8,529	6.53	178.2	7.88	7	31,979	3.14	438.4	7.11
Total	INF	4.00	5	8,044	6.74	185.0	8.14	7	20,556	4.11	551.5	9.09
Total	INF	5.00	5	6,289	7.37	227.7	9.14	7	10,770	6.15	794.3	13.32

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	8	0	0.00	0.0	0.00	10	7,668	2.84	15.1	2.84
Oxide	IND	0.50	8	0	0.00	0.0	0.00	10	6,956	3.10	16.1	3.09
Oxide	IND	0.75	8	0	0.00	0.0	0.00	10	5,032	4.08	17.7	4.04
Oxide	IND	1.00	8	0	0.00	0.0	0.00	10	4,826	4.22	18.0	4.17
Oxide	IND	1.25	8	0	0.00	0.0	0.00	10	4,533	4.42	18.3	4.37
Oxide	IND	1.50	8	0	0.00	0.0	0.00	10	4,162	4.70	18.8	4.64
Oxide	IND	2.00	8	0	0.00	0.0	0.00	10	3,572	5.20	19.8	5.13
Oxide	IND	3.00	8	0	0.00	0.0	0.00	10	3,011	5.72	21.1	5.63
Oxide	IND	4.00	8	0	0.00	0.0	0.00	10	2,233	6.49	24.0	6.39
Oxide	IND	5.00	8	0	0.00	0.0	0.00	10	1,671	7.13	27.4	7.03

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	8	9,305	4.58	80.4	5.10	10	255	0.60	9.6	0.66
Hypogene	IND	0.50	8	9,305	4.58	80.4	5.10	10	255	0.60	9.6	0.66
Hypogene	IND	0.75	8	9,305	4.58	80.4	5.10	10	0	0.00	0.0	0.00
Hypogene	IND	1.00	8	9,305	4.58	80.4	5.10	10	0	0.00	0.0	0.00
Hypogene	IND	1.25	8	9,305	4.58	80.4	5.10	10	0	0.00	0.0	0.00
Hypogene	IND	1.50	8	9,305	4.58	80.4	5.10	10	0	0.00	0.0	0.00
Hypogene	IND	2.00	8	8,388	4.95	82.5	5.48	10	0	0.00	0.0	0.00
Hypogene	IND	3.00	8	6,699	5.69	87.8	6.23	10	0	0.00	0.0	0.00
Hypogene	IND	4.00	8	5,462	6.33	90.3	6.86	10	0	0.00	0.0	0.00
Hypogene	IND	5.00	8	3,390	7.91	79.0	8.26	10	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	IND	0.25	8	9,305	4.58	80.4	5.10	10	7,923	2.77	15.0	2.77
Total	IND	0.50	8	9,305	4.58	80.4	5.10	10	7,211	3.01	15.9	3.01
Total	IND	0.75	8	9,305	4.58	80.4	5.10	10	5,032	4.08	17.7	4.04
Total	IND	1.00	8	9,305	4.58	80.4	5.10	10	4,826	4.22	18.0	4.17
Total	IND	1.25	8	9,305	4.58	80.4	5.10	10	4,533	4.42	18.3	4.37
Total	IND	1.50	8	9,305	4.58	80.4	5.10	10	4,162	4.70	18.8	4.64
Total	IND	2.00	8	8,388	4.95	82.5	5.48	10	3,572	5.20	19.8	5.13
Total	IND	3.00	8	6,699	5.69	87.8	6.23	10	3,011	5.72	21.1	5.63
Total	IND	4.00	8	5,462	6.33	90.3	6.86	10	2,233	6.49	24.0	6.39
Total	IND	5.00	8	3,390	7.91	79.0	8.26	10	1,671	7.13	27.4	7.03

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	8	0	0.00	0.0	0.00	10	7,657	4.00	18.9	3.97
Oxide	INF	0.50	8	0	0.00	0.0	0.00	10	6,624	4.57	21.0	4.54
Oxide	INF	0.75	8	0	0.00	0.0	0.00	10	5,268	5.60	24.2	5.55
Oxide	INF	1.00	8	0	0.00	0.0	0.00	10	4,919	5.94	25.0	5.88
Oxide	INF	1.25	8	0	0.00	0.0	0.00	10	4,796	6.07	25.3	6.00
Oxide	INF	1.50	8	0	0.00	0.0	0.00	10	4,754	6.11	25.4	6.04
Oxide	INF	2.00	8	0	0.00	0.0	0.00	10	4,591	6.26	25.9	6.19
Oxide	INF	3.00	8	0	0.00	0.0	0.00	10	4,314	6.50	26.7	6.43
Oxide	INF	4.00	8	0	0.00	0.0	0.00	10	3,925	6.79	28.0	6.71
Oxide	INF	5.00	8	0	0.00	0.0	0.00	10	3,279	7.23	30.7	7.15

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	8	7,477	2.10	76.3	2.71	10	0	0.00	0.0	0.00
Hypogene	INF	0.50	8	7,477	2.10	76.3	2.71	10	0	0.00	0.0	0.00
Hypogene	INF	0.75	8	7,477	2.10	76.3	2.71	10	0	0.00	0.0	0.00
Hypogene	INF	1.00	8	7,477	2.10	76.3	2.71	10	0	0.00	0.0	0.00
Hypogene	INF	1.25	8	7,477	2.10	76.3	2.71	10	0	0.00	0.0	0.00
Hypogene	INF	1.50	8	7,477	2.10	76.3	2.71	10	0	0.00	0.0	0.00
Hypogene	INF	2.00	8	5,207	2.49	78.6	3.11	10	0	0.00	0.0	0.00
Hypogene	INF	3.00	8	1,939	3.68	79.3	4.25	10	0	0.00	0.0	0.00
Hypogene	INF	4.00	8	630	5.63	79.2	6.10	10	0	0.00	0.0	0.00
Hypogene	INF	5.00	8	376	6.82	84.5	7.27	10	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	INF	0.25	8	7,477	2.10	76.3	2.71	10	7,657	4.00	18.9	3.97
Total	INF	0.50	8	7,477	2.10	76.3	2.71	10	6,624	4.57	21.0	4.54
Total	INF	0.75	8	7,477	2.10	76.3	2.71	10	5,268	5.60	24.2	5.55
Total	INF	1.00	8	7,477	2.10	76.3	2.71	10	4,919	5.94	25.0	5.88
Total	INF	1.25	8	7,477	2.10	76.3	2.71	10	4,796	6.07	25.3	6.00
Total	INF	1.50	8	7,477	2.10	76.3	2.71	10	4,754	6.11	25.4	6.04
Total	INF	2.00	8	5,207	2.49	78.6	3.11	10	4,591	6.26	25.9	6.19
Total	INF	3.00	8	1,939	3.68	79.3	4.25	10	4,314	6.50	26.7	6.43
Total	INF	4.00	8	630	5.63	79.2	6.10	10	3,925	6.79	28.0	6.71
Total	INF	5.00	8	376	6.82	84.5	7.27	10	3,279	7.23	30.7	7.15

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	11	31,732	0.78	48.6	1.20	13	8,118	1.23	131.4	2.40
Oxide	IND	0.50	11	18,622	1.15	71.3	1.77	13	7,401	1.32	142.3	2.60
Oxide	IND	0.75	11	11,491	1.63	100.3	2.49	13	6,497	1.44	159.3	2.87
Oxide	IND	1.00	11	9,148	1.88	119.2	2.90	13	5,819	1.55	173.8	3.10
Oxide	IND	1.25	11	7,334	2.13	140.2	3.34	13	4,980	1.72	191.2	3.44
Oxide	IND	1.50	11	5,285	2.55	179.2	4.11	13	4,235	1.89	212.9	3.80
Oxide	IND	2.00	11	2,554	4.00	300.4	6.62	13	3,612	2.03	237.4	4.16
Oxide	IND	3.00	11	1,599	5.37	433.1	9.17	13	2,286	2.34	309.4	5.13
Oxide	IND	4.00	11	1,453	5.68	463.2	9.75	13	1,645	2.93	318.6	5.78
Oxide	IND	5.00	11	1,351	5.88	486.1	10.16	13	966	3.92	316.7	6.70

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	11	74,070	2.36	45.2	2.67	13	0	0.00	0.0	0.00
Hypogene	IND	0.50	11	60,474	2.82	53.5	3.19	13	0	0.00	0.0	0.00
Hypogene	IND	0.75	11	53,243	3.14	58.7	3.53	13	0	0.00	0.0	0.00
Hypogene	IND	1.00	11	47,046	3.46	64.1	3.89	13	0	0.00	0.0	0.00
Hypogene	IND	1.25	11	42,875	3.70	67.6	4.15	13	0	0.00	0.0	0.00
Hypogene	IND	1.50	11	39,027	3.96	71.3	4.43	13	0	0.00	0.0	0.00
Hypogene	IND	2.00	11	33,273	4.38	78.0	4.89	13	0	0.00	0.0	0.00
Hypogene	IND	3.00	11	22,314	5.54	88.3	6.09	13	0	0.00	0.0	0.00
Hypogene	IND	4.00	11	15,282	6.66	104.2	7.31	13	0	0.00	0.0	0.00
Hypogene	IND	5.00	11	10,467	7.85	122.1	8.61	13	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	IND	0.25	11	105,802	1.89	46.2	2.23	13	8,118	1.23	131.4	2.40
Total	IND	0.50	11	79,096	2.43	57.7	2.85	13	7,401	1.32	142.3	2.60
Total	IND	0.75	11	64,733	2.87	66.1	3.35	13	6,497	1.44	159.3	2.87
Total	IND	1.00	11	56,194	3.20	73.1	3.73	13	5,819	1.55	173.8	3.10
Total	IND	1.25	11	50,209	3.47	78.2	4.04	13	4,980	1.72	191.2	3.44
Total	IND	1.50	11	44,312	3.79	84.2	4.39	13	4,235	1.89	212.9	3.80
Total	IND	2.00	11	35,827	4.35	93.8	5.02	13	3,612	2.03	237.4	4.16
Total	IND	3.00	11	23,913	5.52	111.4	6.30	13	2,286	2.34	309.4	5.13
Total	IND	4.00	11	16,735	6.58	135.4	7.52	13	1,645	2.93	318.6	5.78
Total	IND	5.00	11	11,818	7.62	163.7	8.78	13	966	3.92	316.7	6.70

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	11	37,540	0.74	25.0	0.94	13	15,977	1.27	95.2	2.10
Oxide	INF	0.50	11	17,342	1.37	35.0	1.63	13	15,466	1.30	97.7	2.16
Oxide	INF	0.75	11	10,770	1.98	40.1	2.25	13	14,880	1.34	100.7	2.22
Oxide	INF	1.00	11	9,004	2.25	41.5	2.53	13	13,903	1.38	106.1	2.31
Oxide	INF	1.25	11	7,061	2.64	42.5	2.91	13	12,312	1.47	113.8	2.47
Oxide	INF	1.50	11	4,473	3.56	43.8	3.79	13	10,970	1.56	119.0	2.60
Oxide	INF	2.00	11	2,124	6.14	36.9	6.18	13	7,565	1.87	127.9	2.98
Oxide	INF	3.00	11	2,065	6.26	36.5	6.29	13	2,256	2.32	252.3	4.58
Oxide	INF	4.00	11	1,945	6.42	37.9	6.46	13	1,295	2.92	279.8	5.41
Oxide	INF	5.00	11	1,748	6.64	38.7	6.67	13	793	3.52	280.4	5.98

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	11	18,476	1.77	34.9	2.01	13	0	0.00	0.0	0.00
Hypogene	INF	0.50	11	15,020	2.10	40.9	2.38	13	0	0.00	0.0	0.00
Hypogene	INF	0.75	11	12,736	2.39	46.1	2.70	13	0	0.00	0.0	0.00
Hypogene	INF	1.00	11	10,428	2.76	52.0	3.11	13	0	0.00	0.0	0.00
Hypogene	INF	1.25	11	8,922	3.07	56.0	3.44	13	0	0.00	0.0	0.00
Hypogene	INF	1.50	11	7,569	3.41	61.0	3.81	13	0	0.00	0.0	0.00
Hypogene	INF	2.00	11	5,902	3.94	69.9	4.40	13	0	0.00	0.0	0.00
Hypogene	INF	3.00	11	3,664	5.12	79.7	5.62	13	0	0.00	0.0	0.00
Hypogene	INF	4.00	11	1,983	6.92	89.0	7.41	13	0	0.00	0.0	0.00
Hypogene	INF	5.00	11	1,136	8.85	119.3	9.53	13	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	INF	0.25	11	56,015	1.08	28.2	1.29	13	15,977	1.27	95.2	2.10
Total	INF	0.50	11	32,362	1.71	37.8	1.98	13	15,466	1.30	97.7	2.16
Total	INF	0.75	11	23,506	2.20	43.4	2.50	13	14,880	1.34	100.7	2.22
Total	INF	1.00	11	19,432	2.52	47.1	2.84	13	13,903	1.38	106.1	2.31
Total	INF	1.25	11	15,983	2.88	50.0	3.21	13	12,312	1.47	113.8	2.47
Total	INF	1.50	11	12,042	3.47	54.6	3.81	13	10,970	1.56	119.0	2.60
Total	INF	2.00	11	8,026	4.52	61.2	4.87	13	7,565	1.87	127.9	2.98
Total	INF	3.00	11	5,729	5.53	64.1	5.86	13	2,256	2.32	252.3	4.58
Total	INF	4.00	11	3,929	6.67	63.7	6.94	13	1,295	2.92	279.8	5.41
Total	INF	5.00	11	2,884	7.51	70.5	7.79	13	793	3.52	280.4	5.98

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	15	651	28.34	1991.9	45.66	16	1,015	1.37	123.6	2.46
Oxide	IND	0.50	15	651	28.34	1991.9	45.66	16	995	1.39	125.8	2.51
Oxide	IND	0.75	15	651	28.34	1991.9	45.66	16	930	1.46	133.5	2.64
Oxide	IND	1.00	15	651	28.34	1991.9	45.66	16	790	1.59	151.8	2.93
Oxide	IND	1.25	15	651	28.34	1991.9	45.66	16	622	1.79	183.6	3.42
Oxide	IND	1.50	15	651	28.34	1991.9	45.66	16	454	2.17	225.7	4.18
Oxide	IND	2.00	15	651	28.34	1991.9	45.66	16	346	2.35	291.4	4.97
Oxide	IND	3.00	15	651	28.34	1991.9	45.66	16	346	2.35	291.4	4.97
Oxide	IND	4.00	15	651	28.34	1991.9	45.66	16	297	2.47	305.6	5.22
Oxide	IND	5.00	15	651	28.34	1991.9	45.66	16	175	2.67	331.2	5.65

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	15	41,776	8.35	83.6	8.72	16	31,741	4.16	48.2	4.40
Hypogene	IND	0.50	15	36,228	9.59	94.4	10.00	16	29,878	4.39	51.0	4.65
Hypogene	IND	0.75	15	32,695	10.57	102.4	11.01	16	28,240	4.62	53.4	4.89
Hypogene	IND	1.00	15	27,097	12.64	116.9	13.10	16	26,515	4.86	56.1	5.15
Hypogene	IND	1.25	15	24,433	13.93	125.7	14.41	16	24,644	5.15	59.4	5.45
Hypogene	IND	1.50	15	22,481	15.05	132.1	15.54	16	22,803	5.46	63.2	5.78
Hypogene	IND	2.00	15	20,545	16.34	140.9	16.85	16	17,911	6.49	76.1	6.88
Hypogene	IND	3.00	15	18,203	18.18	150.7	18.69	16	11,900	8.55	105.9	9.12
Hypogene	IND	4.00	15	16,769	19.50	156.4	19.99	16	8,420	10.72	136.9	11.47
Hypogene	IND	5.00	15	15,438	20.87	159.7	21.33	16	6,465	12.68	166.6	13.62

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	IND	0.25	15	42,427	8.65	112.9	9.28	16	32,756	4.07	50.5	4.34
Total	IND	0.50	15	36,879	9.92	127.9	10.62	16	30,873	4.30	53.4	4.58
Total	IND	0.75	15	33,346	10.92	139.3	11.68	16	29,169	4.51	55.9	4.82
Total	IND	1.00	15	27,748	13.01	160.9	13.87	16	27,305	4.77	58.9	5.08
Total	IND	1.25	15	25,084	14.30	174.1	15.22	16	25,265	5.07	62.4	5.40
Total	IND	1.50	15	23,132	15.43	184.4	16.39	16	23,257	5.40	66.4	5.75
Total	IND	2.00	15	21,196	16.71	197.8	17.73	16	18,257	6.41	80.2	6.84
Total	IND	3.00	15	18,854	18.53	214.3	19.62	16	12,246	8.38	111.1	9.00
Total	IND	4.00	15	17,420	19.83	225.0	20.95	16	8,717	10.44	142.6	11.26
Total	IND	5.00	15	16,089	21.17	233.8	22.31	16	6,641	12.42	171.0	13.41

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	15	1,316	24.14	1695.3	38.88	16	3,556	1.38	104.0	2.29
Oxide	INF	0.50	15	1,316	24.14	1695.3	38.88	16	3,556	1.38	104.0	2.29
Oxide	INF	0.75	15	1,316	24.14	1695.3	38.88	16	3,466	1.40	106.5	2.33
Oxide	INF	1.00	15	1,316	24.14	1695.3	38.88	16	2,843	1.55	125.1	2.65
Oxide	INF	1.25	15	1,316	24.14	1695.3	38.88	16	1,749	1.89	191.2	3.60
Oxide	INF	1.50	15	1,316	24.14	1695.3	38.88	16	1,263	2.12	261.2	4.47
Oxide	INF	2.00	15	1,316	24.14	1695.3	38.88	16	1,253	2.13	263.2	4.49
Oxide	INF	3.00	15	1,316	24.14	1695.3	38.88	16	1,253	2.13	263.2	4.49
Oxide	INF	4.00	15	1,316	24.14	1695.3	38.88	16	1,012	2.20	272.5	4.65
Oxide	INF	5.00	15	1,316	24.14	1695.3	38.88	16	145	2.47	305.9	5.22

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	15	19,013	7.90	83.5	8.29	16	26,045	18.42	67.7	18.14
Hypogene	INF	0.50	15	16,928	8.84	92.4	9.27	16	25,543	18.78	68.9	18.49
Hypogene	INF	0.75	15	14,154	10.48	107.1	10.96	16	25,106	19.09	70.0	18.80
Hypogene	INF	1.00	15	12,391	11.87	119.0	12.40	16	24,922	19.23	70.5	18.93
Hypogene	INF	1.25	15	11,498	12.73	125.6	13.27	16	24,401	19.62	71.9	19.31
Hypogene	INF	1.50	15	10,898	13.36	131.0	13.93	16	23,751	20.12	73.6	19.80
Hypogene	INF	2.00	15	10,364	13.97	136.1	14.55	16	22,690	20.98	76.5	20.65
Hypogene	INF	3.00	15	9,223	15.44	147.3	16.05	16	20,384	23.07	83.2	22.70
Hypogene	INF	4.00	15	8,355	16.72	157.2	17.36	16	17,943	25.75	90.7	25.32
Hypogene	INF	5.00	15	7,373	18.46	163.2	19.08	16	16,337	27.85	96.5	27.37

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	INF	0.25	15	20,329	8.95	187.8	10.27	16	29,601	16.38	72.0	16.24
Total	INF	0.50	15	18,243	9.94	208.0	11.40	16	29,099	16.65	73.2	16.51
Total	INF	0.75	15	15,470	11.64	242.1	13.33	16	28,572	16.95	74.5	16.80
Total	INF	1.00	15	13,707	13.05	270.3	14.94	16	27,765	17.42	76.1	17.26
Total	INF	1.25	15	12,814	13.90	286.8	15.90	16	26,150	18.43	79.9	18.26
Total	INF	1.50	15	12,214	14.52	299.5	16.61	16	25,013	19.21	83.1	19.03
Total	INF	2.00	15	11,680	15.12	311.7	17.29	16	23,943	19.99	86.2	19.80
Total	INF	3.00	15	10,538	16.53	340.6	18.90	16	21,637	21.86	93.6	21.64
Total	INF	4.00	15	9,671	17.73	366.4	20.29	16	18,955	24.49	100.4	24.21
Total	INF	5.00	15	8,688	19.32	395.2	22.07	16	16,482	27.63	98.4	27.17

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	0.50	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	0.75	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	1.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	1.25	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	1.50	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	2.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	3.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	4.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	IND	5.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	20	48,384	6.05	457.0	10.04	25	9,633	2.41	151.8	3.71
Hypogene	IND	0.50	20	41,395	7.03	531.1	11.68	25	9,550	2.43	152.9	3.74
Hypogene	IND	0.75	20	36,040	8.01	606.7	13.32	25	9,172	2.50	158.6	3.87
Hypogene	IND	1.00	20	31,844	9.00	681.7	14.96	25	8,821	2.58	163.9	3.99
Hypogene	IND	1.25	20	26,194	10.78	819.2	17.95	25	8,528	2.65	167.2	4.09
Hypogene	IND	1.50	20	22,548	12.37	944.2	20.63	25	8,302	2.70	170.3	4.16
Hypogene	IND	2.00	20	19,582	14.07	1076.8	23.49	25	7,961	2.77	173.4	4.27
Hypogene	IND	3.00	20	16,893	16.08	1229.5	26.84	25	5,577	3.41	183.9	4.97
Hypogene	IND	4.00	20	15,380	17.49	1332.6	29.15	25	4,009	3.96	191.3	5.56
Hypogene	IND	5.00	20	14,480	18.40	1402.7	30.67	25	2,744	4.14	226.9	6.07

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	IND	0.25	20	48,384	6.05	457.0	10.04	25	9,633	2.41	151.8	3.71
Total	IND	0.50	20	41,395	7.03	531.1	11.68	25	9,550	2.43	152.9	3.74
Total	IND	0.75	20	36,040	8.01	606.7	13.32	25	9,172	2.50	158.6	3.87
Total	IND	1.00	20	31,844	9.00	681.7	14.96	25	8,821	2.58	163.9	3.99
Total	IND	1.25	20	26,194	10.78	819.2	17.95	25	8,528	2.65	167.2	4.09
Total	IND	1.50	20	22,548	12.37	944.2	20.63	25	8,302	2.70	170.3	4.16
Total	IND	2.00	20	19,582	14.07	1076.8	23.49	25	7,961	2.77	173.4	4.27
Total	IND	3.00	20	16,893	16.08	1229.5	26.84	25	5,577	3.41	183.9	4.97
Total	IND	4.00	20	15,380	17.49	1332.6	29.15	25	4,009	3.96	191.3	5.56
Total	IND	5.00	20	14,480	18.40	1402.7	30.67	25	2,744	4.14	226.9	6.07

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	0.50	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	0.75	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	1.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	1.25	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	1.50	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	2.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	3.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	4.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00
Oxide	INF	5.00	20	0	0.00	0.0	0.00	25	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	20	22,817	6.10	337.6	8.97	25	6,198	2.10	169.8	3.59
Hypogene	INF	0.50	20	22,054	6.30	348.8	9.27	25	6,198	2.10	169.8	3.59
Hypogene	INF	0.75	20	19,931	6.92	383.9	10.18	25	6,198	2.10	169.8	3.59
Hypogene	INF	1.00	20	18,686	7.34	407.3	10.81	25	5,860	2.17	178.6	3.74
Hypogene	INF	1.25	20	17,636	7.74	428.7	11.38	25	5,524	2.25	187.5	3.90
Hypogene	INF	1.50	20	17,072	7.97	440.3	11.71	25	5,302	2.30	193.5	4.01
Hypogene	INF	2.00	20	15,864	8.50	467.1	12.47	25	5,009	2.38	200.1	4.14
Hypogene	INF	3.00	20	13,617	9.69	522.0	14.12	25	3,794	2.72	218.6	4.64
Hypogene	INF	4.00	20	12,114	10.64	567.1	15.44	25	2,058	3.45	258.1	5.71
Hypogene	INF	5.00	20	10,042	12.27	643.1	17.70	25	1,407	3.31	329.1	6.24

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	INF	0.25	20	22,817	6.10	337.6	8.97	25	6,198	2.10	169.8	3.59
Total	INF	0.50	20	22,054	6.30	348.8	9.27	25	6,198	2.10	169.8	3.59
Total	INF	0.75	20	19,931	6.92	383.9	10.18	25	6,198	2.10	169.8	3.59
Total	INF	1.00	20	18,686	7.34	407.3	10.81	25	5,860	2.17	178.6	3.74
Total	INF	1.25	20	17,636	7.74	428.7	11.38	25	5,524	2.25	187.5	3.90
Total	INF	1.50	20	17,072	7.97	440.3	11.71	25	5,302	2.30	193.5	4.01
Total	INF	2.00	20	15,864	8.50	467.1	12.47	25	5,009	2.38	200.1	4.14
Total	INF	3.00	20	13,617	9.69	522.0	14.12	25	3,794	2.72	218.6	4.64
Total	INF	4.00	20	12,114	10.64	567.1	15.44	25	2,058	3.45	258.1	5.71
Total	INF	5.00	20	10,042	12.27	643.1	17.70	25	1,407	3.31	329.1	6.24

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	0.50	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	0.75	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	1.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	1.25	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	1.50	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	2.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	3.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	4.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Oxide	IND	5.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	0.50	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	0.75	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	1.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	1.25	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	1.50	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	2.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	3.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	4.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Hypogene	IND	5.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	IND	0.25	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	0.50	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	0.75	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	1.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	1.25	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	1.50	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	2.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	3.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	4.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00
Total	IND	5.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	Pancho	41,959	0.71	33.2	0.99	F1	3,831	0.47	31.4	0.74
Oxide	INF	0.50	Pancho	24,417	0.99	50.9	1.42	F1	3,385	0.50	34.4	0.80
Oxide	INF	0.75	Pancho	17,824	1.16	66.3	1.72	F1	1,945	0.64	30.9	0.90
Oxide	INF	1.00	Pancho	13,379	1.32	80.8	2.01	F1	176	1.11	7.4	1.12
Oxide	INF	1.25	Pancho	12,736	1.34	82.3	2.05	F1	0	0.00	0.0	0.00
Oxide	INF	1.50	Pancho	4,766	2.30	116.8	3.29	F1	0	0.00	0.0	0.00
Oxide	INF	2.00	Pancho	4,436	2.39	120.8	3.40	F1	0	0.00	0.0	0.00
Oxide	INF	3.00	Pancho	2,244	2.97	144.2	4.18	F1	0	0.00	0.0	0.00
Oxide	INF	4.00	Pancho	1,485	3.24	154.8	4.54	F1	0	0.00	0.0	0.00
Oxide	INF	5.00	Pancho	0	0.00	0.0	0.00	F1	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	Pancho	455,703	2.40	93.3	3.16	F1	5,448	1.40	71.4	2.00
Hypogene	INF	0.50	Pancho	310,449	3.39	132.3	4.47	F1	3,899	1.91	90.8	2.67
Hypogene	INF	0.75	Pancho	244,942	4.17	163.5	5.50	F1	3,568	2.06	95.8	2.86
Hypogene	INF	1.00	Pancho	200,858	4.94	193.1	6.51	F1	3,325	2.19	99.0	3.01
Hypogene	INF	1.25	Pancho	176,482	5.50	216.2	7.26	F1	3,172	2.26	101.5	3.10
Hypogene	INF	1.50	Pancho	157,467	6.03	238.5	7.97	F1	2,982	2.36	103.0	3.21
Hypogene	INF	2.00	Pancho	123,611	7.34	288.4	9.69	F1	2,687	2.50	105.7	3.37
Hypogene	INF	3.00	Pancho	85,196	9.88	378.6	12.95	F1	1,179	3.28	122.2	4.27
Hypogene	INF	4.00	Pancho	70,350	11.47	431.9	14.96	F1	724	3.81	134.2	4.88
Hypogene	INF	5.00	Pancho	59,375	13.04	479.7	16.90	F1	399	4.02	141.5	5.15

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)			(g/t)	(g/t)	(g/t)
Total	INF	0.25	Pancho	497,663	2.26	88.2	2.97	F1	9,279	1.02	54.9	1.48
Total	INF	0.50	Pancho	334,866	3.22	126.4	4.25	F1	7,284	1.25	64.6	1.80
Total	INF	0.75	Pancho	262,766	3.96	156.9	5.24	F1	5,513	1.56	72.9	2.17
Total	INF	1.00	Pancho	214,236	4.72	186.0	6.23	F1	3,501	2.13	94.4	2.91
Total	INF	1.25	Pancho	189,218	5.22	207.2	6.91	F1	3,172	2.26	101.5	3.10
Total	INF	1.50	Pancho	162,233	5.92	235.0	7.83	F1	2,982	2.36	103.0	3.21
Total	INF	2.00	Pancho	128,047	7.17	282.6	9.47	F1	2,687	2.50	105.7	3.37
Total	INF	3.00	Pancho	87,440	9.71	372.6	12.72	F1	1,179	3.28	122.2	4.27
Total	INF	4.00	Pancho	71,836	11.30	426.2	14.75	F1	724	3.81	134.2	4.88
Total	INF	5.00	Pancho	59,375	13.04	479.7	16.90	F1	399	4.02	141.5	5.15

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)
Oxide	IND	0.25	40	0	0.00	0.0	0.00
Oxide	IND	0.50	40	0	0.00	0.0	0.00
Oxide	IND	0.75	40	0	0.00	0.0	0.00
Oxide	IND	1.00	40	0	0.00	0.0	0.00
Oxide	IND	1.25	40	0	0.00	0.0	0.00
Oxide	IND	1.50	40	0	0.00	0.0	0.00
Oxide	IND	2.00	40	0	0.00	0.0	0.00
Oxide	IND	3.00	40	0	0.00	0.0	0.00
Oxide	IND	4.00	40	0	0.00	0.0	0.00
Oxide	IND	5.00	40	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)
Hypogene	IND	0.25	40	0	0.00	0.0	0.00
Hypogene	IND	0.50	40	0	0.00	0.0	0.00
Hypogene	IND	0.75	40	0	0.00	0.0	0.00
Hypogene	IND	1.00	40	0	0.00	0.0	0.00
Hypogene	IND	1.25	40	0	0.00	0.0	0.00
Hypogene	IND	1.50	40	0	0.00	0.0	0.00
Hypogene	IND	2.00	40	0	0.00	0.0	0.00
Hypogene	IND	3.00	40	0	0.00	0.0	0.00
Hypogene	IND	4.00	40	0	0.00	0.0	0.00
Hypogene	IND	5.00	40	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)
Total	IND	0.25	40	0	0.00	0.0	0.00
Total	IND	0.50	40	0	0.00	0.0	0.00
Total	IND	0.75	40	0	0.00	0.0	0.00
Total	IND	1.00	40	0	0.00	0.0	0.00
Total	IND	1.25	40	0	0.00	0.0	0.00
Total	IND	1.50	40	0	0.00	0.0	0.00
Total	IND	2.00	40	0	0.00	0.0	0.00
Total	IND	3.00	40	0	0.00	0.0	0.00
Total	IND	4.00	40	0	0.00	0.0	0.00
Total	IND	5.00	40	0	0.00	0.0	0.00

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)
Oxide	INF	0.25	40	2,223,290	0.45	24.0	0.66
Oxide	INF	0.50	40	774,814	0.89	41.7	1.24
Oxide	INF	0.75	40	391,216	1.36	60.6	1.86
Oxide	INF	1.00	40	251,368	1.77	78.6	2.42
Oxide	INF	1.25	40	163,627	2.26	104.5	3.13
Oxide	INF	1.50	40	132,307	2.52	122.7	3.54
Oxide	INF	2.00	40	89,583	3.02	166.3	4.43
Oxide	INF	3.00	40	46,090	3.91	275.7	6.31
Oxide	INF	4.00	40	26,423	4.85	422.3	8.58
Oxide	INF	5.00	40	21,561	5.19	485.5	9.50

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)
Hypogene	INF	0.25	40	2,774,928	0.50	27.2	0.73
Hypogene	INF	0.50	40	1,059,166	0.93	51.4	1.37
Hypogene	INF	0.75	40	664,616	1.27	65.4	1.82
Hypogene	INF	1.00	40	444,545	1.61	81.7	2.30
Hypogene	INF	1.25	40	325,222	1.96	92.5	2.73
Hypogene	INF	1.50	40	227,273	2.46	105.1	3.32
Hypogene	INF	2.00	40	147,728	3.25	116.3	4.18
Hypogene	INF	3.00	40	76,715	4.82	135.2	5.85
Hypogene	INF	4.00	40	57,485	5.65	137.4	6.66
Hypogene	INF	5.00	40	39,698	6.45	154.9	7.59

OXID	RESCAT	Cut-off	MZON	TONNES	Au_uc	Ag_uc	AuEq_uc
		AuEq_uc			(g/t)	(g/t)	(g/t)
Total	INF	0.25	40	4,998,218	0.48	25.8	0.70
Total	INF	0.50	40	1,833,980	0.92	47.3	1.31
Total	INF	0.75	40	1,055,832	1.30	63.6	1.84
Total	INF	1.00	40	695,913	1.67	80.6	2.34
Total	INF	1.25	40	488,849	2.06	96.5	2.86
Total	INF	1.50	40	359,581	2.48	111.6	3.40
Total	INF	2.00	40	237,311	3.16	135.1	4.27
Total	INF	3.00	40	122,804	4.48	188.0	6.02
Total	INF	4.00	40	83,908	5.39	227.1	7.26
Total	INF	5.00	40	61,258	6.01	271.2	8.26